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S u m m a r y .  - -  Contemporary approaches to quantum field theory and gravitation 
often use a four-dimensional space-time manifold of Euclidean signature (which we 
call ,&yperspace,, ) as a continuation of the Lorentzian metric. To investigate what 
physical sense this might have we review the history of Euclidean techniques in 
classical mechanics and quantum theory. Schwinger's Euclidean postulate gives a 
fundamental significance to such techniques and leads to a clearer understanding of 
the TCP theorem in terms of space-time uniformity. This is closely related to the 
principle of identicality that characterizes non-relativistic quantum theory. In 
quantum gravity we suggest that the Hartle-Hawking treatment of the wave func- 
tion of the universe rests on a notion of space-time uniformity which can be related 
to the Euclidean postulate as a kind of ~,perfect cosmological principle,, on the 
unobservable wave function of the universe which eliminates any a priori  asym- 
metry between space and time. Euclidean hyperspace may mediate between the 
infinite-dimensional Hilbert space of quantum theory (whose metric is Euclidean) 
and the four-dimensional Lorentzian space-time of physical observations. 

PACS 03.65 - Quantum theory; quantum mechanics. 
PACS 03.70 - Theory of quantized fields. 
PACS 04.60 - Quantum theory of gravitation. 
PACS 02.90- Other topics in mathematical methods in physics. 

1. - I n t r o d u c t i o n .  

Twentieth century physics has been largely concerned with a four-dimensional 
space-time characterized by an indefinite Lorentzian metric of signature ( - ,  +,  + ,  +). 
However, much recent  theoretical work in quantum field theory and quantum grav- 
itation defines ~ = i t  to continue to a Euclidean ,(hyperspace- (as we will call it) of 
signature ( + ,  + ,  + ,  + )  in order to simplify calculations. There has been a tacit 
assumption that  such methods are purely mathematical contrivances which are 
devoid of any physical significance. We will examine some ways in which Euclidean 
hyperspace may have important p h y s i c a l  significance beyond its mathematical utility. 

After surveying the history of the 0 (4)  symmet ry  of the Coulomb problem and the 
use of imaginary time variables in quantum-statistical mechanics and field theory, we 
will examine the Euclidean postulate which Schwinger introduced as a fundamental  
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axiom of his source theory and which clarifies the significance of the TCP theorem [1]. 
We will argue that this postulate is closely related to a notion of indistinguishability 
and equality which we have elsewhere called the ,,principle of identicality,- raising 
the question of whether this principle should indeed be considered a fundamental 
postulate of quantum theory[2]. 

We then investigate what follows if such a principle of identicality is extended 
from timelike intervals to completely general intervals including spacelike ones. The 
motivation for this is that the identicality of particles should not only obtain for 
intervals immediately accesible to observation but also for those which will 
eventually become observable. This means that we require that the conditions of 
identicality must be uniformly extended from the interior of the light cone to the 
whole domain of space-time. Consequently, the principle of identicality takes the 
form of a hypothesis of uniformity of the fundamental states throughout space-time, 
which is also the purport of Schwinger's Euclidean postulate. Just as Einstein's 
theory denied that any ,,prior geometry- could prejudice the dynamical interrelation 
between matter and gravity, the Euclidean postulate denies any a priori asymmetry 
between space and time in the wave function of the universe. In so doing, we suggest 
that this postulate acts as a kind of ,,perfect cosmological principle, for quantum 
gravitation. We speculate also that Euclidean hyperspace forms the connection 
between the infinite-dimensional Hilbert space of quantum theory and the 
four-dimensional space-time of observable, relativistic, physics. As such, it may help 
connect the realms of the quantum and of gravitation. 

2. - Hi s tor i ca l  d e v e l o p m e n t  o f  E u c l i d e a n  hyperspace .  

The group of rotational symmetries in the Euclidean hyperspace, 0(4), was used 
even before the beginnings of the new quantum theory. 0(4)  is the dynamical 
symmetry of the SchrSdinger equation for the Coulomb potential, but it was known 
as an additional ,,hidden, symmetry for the Coulomb problem even in classical 
mechanics in the form of the so-called Runge-Lenz vector; Goldstein has reviewed its 
earlier history through the identification of this vector as an invariant of 
inverse-square forces by Laplace in 1799 and even earlier by Jakob Hermann in 
171013]. In fact, even before SchrSdinger solved the hydrogen energy spectrum 
through his wave equation, Pauli independently solved this problem through the 
application of the Runge-Lenz vector[4]. Schwinger formulated this approach 
through the elegant technique of four-dimensional angular momenta in Euclidean 
hyperspace [5]. The more general implications of this symmetry are indicated by the 
circumstance that the Coulomb potential seems to have a special relation to the 
dimensionality of space; only an inverse-square law force will cancel the growth of 
surface area as the square of the radius, as is required if Gauss's theorem is to yield a 
conserved charge. It must be noted that this symmetry only obtains if the hydrogen 
atom is in a bound state. If it is unbound, the Lorentz group applies, as it does also if 
the full Dirac equation is used. Even in this simple example, the hidden group of 
Euclidean four-dimensional symmetry: makes itself known in the approximate form of 
the non-relativistic equation. What is surprising is that in Schwinger's treatment the 
Euclidean group returns even in the context of the fully relativistic theory. With this 
in mind, the insight of the hidden 0(4) symmetry of hydrogen seems a far more 
significant and less isolated chapter in the development of quantum theory [6]. 
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Other approaches further revealed the advantages of Euclidean techniques. Soon 
after the publication of Einstein's 1916 theory, Flamm embedded the spatial part of 
the Schwarzschild solution in a four-dimensional Euclidean manifold [7]. Bloch used 
an imaginary time variable in 1932 as a way of introducing finite-temperature Green's 
functions in many-body theory [8]. Wick used the Euclidean technique to simplify the 
Bethe-Salpeter equation [9] and Schwinger particularly emphasized the wide-ranging 
significance of the Euclidean domain for quantum field theory [10]. Such techniques 
are widely used in many areas of modern field theory as well as quantum gravitation. 
Hawking has gone as far as to assert that ,,we all know that quantum gravity has to 
be formulated in the Euclidean domain-[11]. This is an assertion that has been 
questioned both on technical and physical grounds. Yet such techniques are widely 
used at present, despite questions that have been raised concerning the propriety of 
-euclideanization, [12-16], The question remains: are there physical grounds that 
would support the use of such a Euclidean principle as an axiom of quantum 
gravitation and field theory? 

3. - The  wave  f u n c t i o n  o f  the  universe  and the  E u c l i d e a n  pos tu la te .  

As an example of the use of Euclidean techniques, let us turn to the approach of, 
Hartle and Hawking, in which the wave function F[hij ] of a spatially closed universe 
with three-metric h~j is defined through a Euclidean functional-integral prescription. 
They then use this Euclidean prescription to show that the wave function obeys the 
Wheeler-DeWitt equation with the ,(no boundary- condition [17]. Precisely because of 
the form of this boundary condition, the analyticity of ~ is such that the Euclidean 
rotation of integration contours can be performed. Because of this analyticity, then, 
the Euclidean technique can be used even though the Wheeler-DeWitt equation is 
((hyperbolic, on a superspace whose metric has signature ( - ,  + ,  + ,  +,  +,  + ). 
Hartle and Hawking infer, then, that the Euclidean functional-integral prescription 
-implies not only the Wheeler-DeWitt equation but also the boundary conditions 
which determine the ground-state solution, as well as permitting , the direct and 
explicit calculation of the semi-classical approximation,. 

Such semi-classical approximations lead to simple differential equations for the 
wave function of the universe reminiscent of the quantum theory of the hydrogen 
atom. For example, Hartle and Hawking note that the amplitude for a zero-volume 
three-sphere (in their minisuperspace model) is finite and non-zero, in contrast to the 
singularity evidenced by the classical theory for that case, which represents collapse 
of the universe to a point. They compare this to the familiar fact that in the s-state of 
the hydrogen atom the wave function does not vanish even at the origin, where 
presumably the electron and proton would coincide and where classical theory 
expects a singularity. We would only add to this analogy that the Euclidean 
symmetry of the wave function of the universe may be the analogue on the cosmic 
scale of the 0(4) ,,hidden symmetry,  of the hydrogen atom, now applied to the whole 
universe considered as a bound state. But this playful analogy really calls for  a more 
adequate account of why such Euclidean symmetries could ever apply either to the 
hydrogen atom or to the universe. 

Our argument relies on the Euclidean postulate that Schwinger has formalized in 
his phenomenological theory of sources but which might be applied to quantum 
gravity as well. This postulate is best approached by reconsidering the TCP theorem. 
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4. - The TCP theorem and Schwinger's Euclidean principle. 

The TCP theorem requires that if any physical process is possible, there must also 
be possible the same process with time reversed and parity inverted (TP) as well as 
particles changed to antiparticles (C). Basically, going from particle to antiparticle is 
equivalent to going to a particle reversed in space and time coordinates but with 
equal rest mass. 

The essential difficulty this poses is that such a reversal risks violating causality, 
since the given process would be in the forward light cone (future), while the 
time-reversed process would be in the backward light cone (past). No Lorentz 
transformation corresponding to propagation less than the speed of light can link 
these two without possibly interchanging a cause with an effect. Then how can a 
theory based on relativity be consistent with this connection? 

This difficulty is resolved in the formal proofs of the TCP theorem through the use 
of the so-called complex Lorentz group[18]. The ordinary group of Lorentz 
transformations A ~ falls apart into four disconnected components characterized by the 
value of the determinant detA = _ 1 and by the sign Ao ~ = -+ 1. This follows because of 
the invariant distinction between past and future which obtains in all such 
transformations and which characterizes each of these components. To apply the TP 
operator means going from one of these disconnected components of the group to 
another, since past and future are interchanged thereby. Since the complex group has 
only two disconnected components given by detA = + 1, it can connect the past and 
future states characterized by sign A = -1 .  The space-time variables are now allowed 
to be complex and hence the Lorentzian metric can be analytically continued to a 
Euclidean form in which the characteristic minus sign no longer distinguishes time 
from space variables. 

So in order to ,,sneak, from the particle to the antiparticle we must go into a 
Euclidean space in which there is no causal distinction between past and future. But 
in order that causality be preserved, we must always re-emerge into Lorentzian 
space-time where physical processes are manifest and observable. This is the core of 
Schwinger's insight that the TCP theorem means that, attached to the Lorentzian 
space-time, there is a four-dimensional Euclidean manifold in which there is no 
essential difference between ,~space- or ,~time,, coordinates. 

Schwinger has formalized this attached Euclidean space in his theory of sources. 
He introduces sources which create or annihilate one particle (say) and insists that an 
overall source which creates and then annihilates a particle cannot be distinguished 
into component parts, ,(aside from reference to the space-time region that [a 
part]occupies, [19]. Schwinger notes that already creation and annihilation have been 
knit together inextricably so that nothing can distinguish the ,,creative,, part of the 
source from the ,,annihilative,, part, which he calls ,,the hypothesis of space-time 
uniformity,,. The continued i~lenticality of particles as indistinguishability through 
creation and annihilation is implicit in his treatment. In defining the amplitude for 
the persistence of the vacuum state upon such single-particle creation and 
annihilation, Schwinger introduces a causal Green's function /1+ ( x -  x ' )  which 
appears to refer explicitly only to timelike separations of x and x '. But he insists that 
the spacelike region of (x - x ' ) ,  where causality has no invariant meaning, must not 
lead to different values than those implied by the timelike region. Thus Schwinger 
considers that his hypothesis of space-time uniformity forbids ,,the existence of 
special relationships between sources,, such as would follow from the addition of 
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functions dependent upon the sign of the interval. To give this hypothesis ,,more 
precise, if rather abstract, form,, Schwinger considers the four-dimensional 
Euclidean space attached to Minkowski space through the complex transformation 
Xa = ix ~ He continues: 

,,There is no analogue in Euclidean space to the Minkowski distinction between 
timelike and spacelike intervals. Accordingly, special space-time structures would be 
rejected if one insisted that the invariant vacuum amplitude that describes a 
complete physical process continue to be meaningful and invariant on mapping the 
Minkowski space onto the Euclidean space. This is the Euclidean postulate[20].~>. 

Schwinger then generalizes the source function to include charged sources. He 
shows that the sources for creation and annihiliation of charged particles can be 
chosen to be complex conjugate functions. These creation and annihilation functions 
cannot correspond to states of different mass. If they did, the Green's function 
~1+ ( x -  x ' )  would not have a unique extrapolation into spacelike regions since it 
would have to take into account the possibility of source functions corresponding to 
different masses of particles in different space-time regions. Here identicality as the 
equality of the masses of particle and antiparticle is directly related to the Euclidean 
postulate. Schwinger also shows that the creation of a particle at x'  followed by its 
annihilation at x implies also the possibility of the creation of a possibly different 
complex-conjugated particle at x which then is annihilated at x' .  This follows from 
the hypothesis of space-time uniformity since the ,,source, and ,,sink~ aspects of the 
source cannot be separated and must correspond to each other exactly, Schwinger 
concludes: 

,,It is the principle of space-time uniformity that demands equal masses for the 
two kinds of particle, which are identified as particle and antiparticle. The Euclidean 
postulate produces the same conclusion through the absence of an invariant 
distinction between x 4 -  x~ < 0 and Xa-  x~ > 0, which permits only one mass- 
parameter to appear [21] .... 

So the equality of the mass of particle and antiparticle is essential to the TCP 
theorem and it is easy to make the connection explicit. As Schwinger observes: 

,,The wider invariance introduced by the Euclidean postulate thus enables one 
to perform some discontinuous Lorentz transformations through the intermediary of 
continuous Euclidean transformations.)). 

Since zl+ ( x -  x ' ) =  A § ( - x  + x ' )  from the Euclidean postulate, the structure of all 
amplitudes is causally reversed under the TP transformation x , - o - x ~ .  The C 
transformation then re-inverts the causal order, so that TCP restores the amplitude 
to its original form. 

Although many treatments of the TCP theorem emphasize its grounding in the 
causality and locality of the relativistic theory, the theorem rests on a more general 
basis. Even a non-local theory which violates causality and the normal relation 
between spin and statistics can obey the TCP theorem as long as it obeys a weakened 
form of locality[22]. What seems to be indispensable is the global invariance of the 
theory as expressed by the Euclidean postulate. 
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5. - The Euclidean postulate and the principle of  identicality. 

What physical sense does this seemingly unphysical Euclidean hyperspace make? 
We suggest that it is intimately related to the principle of identicality. We have 
defined this principle in non-relativistic theory as the postulate that all observable 
physical states must be classes of exactly identical particles, in both the senses that 
they must be equal and indistinguishable [2]. Quantized fields indeed lead naturally 
to identical particles in the timelike region but such identical particles must remain 
identical whether they are in timelike or spacelike regions. However, no principle 
based on the ordinary Lorentz group can do this; Euclidean hyperspace permits 
global symmetries that will enforce identicality. 

In order to establish the existence of a distinct species of identical particles, there 
must be a specific ,,marker, which characterizes each species of identical particles. 
Such a marker would need to be discrete so that individuals could not be 
distinguished within the species through continuous variation of the marker. For 
example, all electrons are characterized by their discrete and identical electric charge 
as well as by their spin and lepton number. In general, internal symmetries are 
necessary to give markers that will give observable identicality. Symmetries in 
space-time can only give a kinematic description which does not fully characterize 
identicality. Particles can exist virtually at other mass energies besides that 
necessary for real (on mass shell) existence, but their internal quantum numbers 
always remain the same and they establish the identity of the species of particle. 

A simple connection of internal symmetries to the Lorentz group may be given by 
the Euclidean postulate. For instance, Schwinger has shown that the Euclidean pos- 
tulate requires that every half-integral spin particle possesses a chargelike at- 
tribute [23]. In order to show this, Schwinger interprets the postulate to mean that 
(,the Euclidean transcription may contain no indication of the original Minkowski 
space,. This occurs naturally in his treatment of integer spins. However, in the case 
of half-integral spin, the time axis would be still singled out in Euclidean space unless 
one introduced an independent antisymmetric matrix of the form q = ay. This matrix 
then can be interpreted as a charge matrix. A heuristic way of seeing this is to note 
that all spinor fields have intrinsically two-valued representations [24]. These will be 
confused when the space-time reversal TP is made unless there is a distinct quantum 
number to differentiate the alternative C states; that is, there must be a charge 
quantum number to differentiate particle from antiparticle. In contrast, a particle of 
integer spin can be its own antiparticle and, in that case, need not consistently bear a 
charge. In this example the internal gauge symmetry corresponding to the conserved 
charge is closely related to the connection between the Minkowski and Euclidean 
spaces. 

In order for there to be experimental observations of real quantities, the group 
chosen must be capable of yielding such quantities. It would seem as if this could be 
achieved in a real Euclidean hyperspace, but this turns out not to be the case, as a 
result of a general theorem of Cartan [25]. We require that real observable quantities 
should result from the underlying theory. Cartan addressed the question of such a 
-real image, emerging from the Euclidean space and showed that it is not possible to 
obtain a real image unless we pass to Lorentzian space-time. His demonstration 
begins by considering the general product of two identical spinors. This product can 
then be represented by what he calls a ,bivector- with real components, an example 
of which is the electromagnetic field tensor F~v, whose components are observable 
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electric and magnetic fields. Such a bivector naturally emerges when the rotations 
depend on a specific parameter t in terms of which one then defines an ,,infinitesimal 
rotation- as occurring during dt[26]. However, such a ,real image, of a physical 
bivector is only possible if one continues from Euclidean hyperspace to the 
pseudo-Euclidean space-time of special relativity. Interestingly, his argument 
requires that the spaces in question be of even dimensionality and may bear on the 
question of why space-time has four dimensions. 

Cartan's argument is significant since it shows the way in which we may be forced 
to introduce the Minkowski metric on the underlying Euclidean space simply so that 
real fields are consequently observable in experiment. Further, it is the presence of a 
causal distinction between spacelike and timelike intervals which distinguishes 
Lorentzian from Euclidean spaces. The underlying Euclidean space still emphasizes 
the fundamental identicality of these two kinds of process in themselves. In this 
account, causality emerges as a concomitant of the observability of particles rather 
than as a fundamental quality of those particles in themselves. It is interesting that 
there appears to be no contradiction between the non-causal Euclidean space and the 
causal Lorentzian space-time. Rather, causality seems to be the condition for the 
observability of identical particles. 

The Euclidean postulate may be suitable to be a fundamental postulate of 
quantum-gravitational theory since it enforces a ,,perfect cosmological principle, of 
space-time uniformity on the level of the wave function, which is not directly 
observed. In contrast, steady-state cosmology attempted to apply a perfect cosmolog- 
ical principle on the level of observable quantities; it was unable to do so 
without contradicting observation [27,28]. In the true spirit of quantum theory, the 
Euclidean postulate ensures that the fundamental level of cosmology, the wave 
function and its Hilbert space, is purged of any a priori asymmetry between space 
and time, in the same way that Einstein's theory prevents any ,,prior geometry- from 
infringing the dynamic relation between matter and gravitation [29]. 

6. - Concluding  speculat ions.  

Hawking has written that ,one could take the attitude that quantum theory and 
indeed the whole of physics is really defined in the Euclidean region and that it is 
simply a consequence of our perception that we interpret it in the Lorentzian 
regime, [30]. Our argument has concerned what fundamental principle might indeed 
move one to adopt that attitude; the observed Lorentzian regime may emerge into 
our perception not out of arbitrary subjectivity but from the requirement that 
perception register only real numbers. Observable reality as it is manifest in 
Lorentzian space-time may be connected to another level of reality which is governed 
by Euclidean hyperspace. There, the symmetry between space and time is perfect 
and not yet abridged by the appearance of causal connections. Such a connection of 
Euclidean with Lorentzian geometry is reminiscent of the work of Klein which 
established the consistency of Euclidean and non-Euclidean geometries by showing 
the way in which each of these geometries can give consistent models of the 
others [31,32]. The geometries of Lobachevski and Riemann always depend on an 
observable parameter (the curvature of space) yet are consistently related to 
Euclidean geometry, which does not depend on any parameter. Similarly, the 
Lorentz group concomitant to observable phenomena may be consistently related to 
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the Euclidean group. We speculate tha t  this may be the significance of Schwinger's 
Euclidean postulate. One re turns  at this point to Minkowski's s ta tement  that  
,,henceforth space by itself and time by  itself are doomed to fade away into mere  
shadows, and only a kind of union of the two will preserve an independent 
reality~ [33]. Without denying this, we now might continue Minkowski's thought: 
space-time is the observable manifestation of an unobservable Euclidean hyperspace,  
in which the union of space and time is perfect. 

B e t w e e n  the unobservable realm of the Hilbert  space with its Euclidean metric 
and the observable realm of Lorentzian space-time there  may be a middle term, the 
Euclidean hyperspace which mediates between the unobservable and the observable. 
In so doing it faces both towards the complex-valued realm of Hilbert  space as well as 
towards the real-valued space-time of causal appearances. 

I thank J. Schwinger for the conversation, many years  ago, which led me to reflect 
on these matters .  I also thank St. John's College and the Alfred P. Sloan Foundation 
for their  support.  
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