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only a few hundred are devoted to music, but these

have special significance in his vast oeuvre, even
though they are among his least-known works. Music was
among the first topics he addressed at length, and he
returned to it several times throughout his life. Moreover,
musical questions led Euler to consider new mathematical
topics and devise new approaches that then characterized
several of his most important initiatives in mathematics and
physics. Indeed, Euler’s individual mathematical discover-
ies, great as they are, need to be placed in context of his
larger role in the beginnings of modern number theory and
topology. As familiar as these mathematical disciplines
have become, we cannot take them for granted but should
try to understand how they came into being in Euler’s
hands. In this story, his musical writings open surprising
perspectives.

Euler stands in a long line of musical mathematicians,
arguably reaching back to the Pythagoreans, who con-
nected consonant musical intervals with simple ratios, such
as the octave (2:1) and the perfect fifth (3:2). From Plato
until the seventeenth century, music was studied as part of
a “four-fold way” (quadrivium), alongside arithmetic,
geometry, and astronomy. For Johannes Kepler, music was
central to his search for planetary laws of motion in his
Harmonices mundi (1619)." René Descartes’s first work
was a short Compendium musicae (1618); in subsequent
years, he continued to correspond with Marin Mersenne on
musical matters alongside questions in mathematics and
physics. Mersenne himself considered music the central
science, which he explored in his encyclopedic Harmonie
universelle (1637).* Isaac Newton’s youthful notes show his
interest in musical ratios; he later tried to impose the
musical octave on the color spectrum (1675).°

‘) f Leonhard Euler’s thirty thousand published pages,

Early Musical Writings

Euler also began his studies early in his life, in a milieu that
considered music a liberal art integrally connected with
mathematics, not separate from it. At age 13 (1720), Euler
matriculated at the University of Basel, which included
musical studies in its curriculum and was an important
center of musical thought. His father, a Calvinist pastor,
introduced him to Johann Bernoulli (1667-1748), whom
Euler visited on Saturday afternoons to discuss mathematics.

See Peter Pesic, “Earthly Music and Cosmic Harmony: Johannes Kepler's Interest in Practical Music, Especially Orlando Di Lasso,” Journal of Seventeenth-Century

Music 11(1), (2005), http://www.sscm-jscm.org/v11/no1/pesic.html.

2For a fuller discussion of Descartes, Mersenne, Kepler, and Newton, as well as of Euler, Helmholtz, Riemann, and others, see Peter Pesic, Music and the Making of

Modern Science (MIT Press, forthcoming, 2014).

3See ibid., chap. 8, and Peter Pesic, “Isaac Newton and the Mystery of the Major Sixth: A Transcription of His Manuscript ‘Of Musick’ with Commentary,”

Interdisciplinary Science Reviews 31 (2006), 291-306.
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Johann noted his extraordinary talents and persuaded
Euler’s father to allow his son to follow his mathematical
interests; thereafter, Johann continued to correspond with
Euler about mathematical, scientific, and musical questions,
as did his son Johann II (1710-1790).

Indeed, Euler was much occupied with music through-
out his life. Nicholas Fuss, his student, son-in-law, and
secretary, recorded that “Euler’s chief relaxation was music,
but even here his mathematical spirit was active. Yielding
to the pleasant sensation of consonance, he immersed
himself in the search for its cause and during musical
performances would calculate the proportion of tones.”
This quest for a new mathematics of music persisted
throughout his productive life.

Euler’s earliest scientific notebooks include an outline
he prepared at age 19 (1726) for a projected work he
entitled “Theoretical Systems of Music,” an ambitious sur-
vey for which he intended to include sections on
composition in one and many voices, treating both melodic
and harmonic writing.” His outline also envisaged chapters
on various dances, as well as larger musical forms. Clearly,
Euler’s interest in music encompassed many aspects of
contemporary composition and practical music making, not
only its mathematical elements. The connections we will

consider between music and mathematics should not be
understood as “interdisciplinary,” because Euler’s early
studies considered music and mathematics as part of a
single coordinated whole, as the gquadrivium had long
mandated.

Indeed, in his early manuscripts, notes on musical the-
ory precede any material relating to his second printed
work, “Physical Dissertation on Sound” (1726), indicating
the path that led him, already in his late teens, from music
to the mathematical physics of sound.’ Starting with the
work of Newton and Johann Bernoulli the elder, Euler
extended the mechanics of sound waves to wind instru-
ments, an application of particular interest to him. Although
beyond the scope of this article, Euler’s early work on
sound laid the foundation for his advocacy of the contin-
uum cosmology, for his seminal work on fluid mech-
anics, as well as for his interest in the analogy between
sound and light that led him to argue for a wave theory of
light.”

During this same period, Euler was also working on a
more speculative, larger work, his Tentamen novae theorae
musicae ex certissimis harmoniae principiis dilucide
expositae (Essay on a New Theory of Music Based on the
Most Certain Principles of Harmony Clearly Expounded).®
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“From Fuss's “Eulogy in Memory of Leonhard Euler,” in A. P. Yushkevich, N. N. Bogolyubov, and G. K. Mikhalov (eds.), Euler and Modern Science, Mathematical
Association of America, Washington, D.C., 2007, 375.

5See S. S. Tserlyuk-Askadskaya, “Euler’s Music-Theoretical Manuscripts and the Formation of His Conception of the Theory of Music,” in Euler and Modern Science,
349-360, Yushkevich et al., Euler and Modern Science, 75. For reproductions of Euler’s notebooks, see H. Bredekamp and W. Velminki (eds.), Mathesis & Graphé:
Leonhard Euler und die Entfaltung der Wissenssysteme, Akademie Verlag, Berlin, 2010, 39-64.

SFor the original text, see “Dissertatio physico de sono,” E2, Ill.1.183-196. The original text of this and other works by Euler may also be found in Leonhard Euler, Opera
Omnia, B. G. Teubner, Leipzig, 1911. For convenience, | will cite them by the standard Enestrdm number of each item, here E2, and its place in the Opera omnia by
series, volume, and pages, here 111.1.183-296. These works (along with helpful listings of translations and secondary literature) can be found at the online Euler Archive
at http://www.math.dartmouth.edu/ ~ euler/. Euler’s first published paper, ‘“Constructio linearum isochronarum in medio quocunque resistente,”” E1, 11.6.1-3, con-
cerned the brachistochrone problem, finding a curve along which a particle falls in the shortest time. See C. Edward Sandifer, The Early Mathematics of Leonhard Euler,
Mathematical Association of America, Washington, D.C., 2007, 3-5.

’See Leonhard Euler and C. Truesdell, Rational Fluid Mechanics, 1687-1765: Editor’s Introduction to Vol. ll, 12 of Euler’s Works, Orell Fuissli, Ztirich, 1954; C. Truesdell,
The Rational Mechanics of Flexible or Elastic Bodies, 1638—1788: Introduction to Leonhardi Euleri Opera Omnia Vol X et X| Seriei Secundae, Orell Fussli, Zurich, 1960;
G. K. Mikhailov and L. I. Sedov, ‘“The Foundations of Mechanics and Hydrodynamics in Euler's Works,” Yushkevich et al., Euler and Modern Science, 167-181;
Lokenath Debnath, The Legacy of Leonhard Euler: A Tricentennial Tribute, Imperial College Press, London, 2010, 297-336. For an overview of Euler’s relation to
physics, see Dieter Suisky, Euler as Physicist, Springer, Berlin, 2009; for further discussion of Euler’s work on the theories of sound and light, see Pesic, Music and the
Making of Modern Science, chap. 10.

8See Hermann Richard Busch, Leonhard Eulers Beitrag zur Musiktheorie, G. Bosse, Regensburg, 1970; E. V. Gertsman, “Euler and the History of a Certain Musical-
Mathematical Idea,”” Yushkevich et al., Euler and Modern Science, 335-347.
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Unable to find a job in his native city, in 1727 Euler moved
from Basel to St. Petersburg, where he obtained the chair of
natural philosophy in 1730, the year he completed writing
his Tentamen. By devoting so much of his attention to this
work during the crucial period in which he needed to
establish himself in a permanent position, Euler showed
how integral he considered music to be to mathematics and
natural philosophy.

Euler began his Tentamen by reviewing his earlier work
on the physical basis of sound. Dissatisfied with the tradi-
tional Pythagorean lore that simple ratios such as 1:2
(octave) are more perfect than complex ones such as
243:256 (semitone), Euler argued that they were more
pleasurable and calculated the exact degrees of pleasure
involved.” Euler’s calculus of sentiment pioneered a new
mathematics of aesthetics, a field that remains scarcely
explored.’® To connect perceived feeling with mathemati-
cal order, he stipulated that “two or more sounds are
pleasing when the ratio, which exists between the numbers
of vibrations produced at the same time, is understood; on
the other hand, dissatisfaction is present when either no
order is felt or that order which it seems to have is suddenly
confused.” To make this quantitative, “we graded this
perceptive ability in certain degrees, which are of the
greatest importance in music and also may be found to be
of great value in other arts and sciences of which beauty is
a part. Those degrees are arranged in accordance with the
ease of perceiving the ratios, and all those ratios that can be
perceived with equal facility are related to the same
degree.” This he calls their degree of agreeableness (gradus
suavitatis), which might be translated as sweetness, charm,
or tunefulness.!

The priority the ancients had given to the intervals and
ratios themselves Euler now assigned to the perceiving
human subject.'” For the first degree of agreeableness he
takes the unison, 1:1 (which some ancient sources refused
to consider an interval at all); for the second, the octave,
1:2; the ratios 1:3 (twelfth) and 1:4 (double octave) both
occupy the third degree, because “which of these last two
is the more easily perceived is disputable.” Euler illustrates
his reasoning with a diagram (Fig. 1) showing “the pulses
in the air as dots placed in a straight line. The distances
between the dots correspond to the intervals of the pulses,”
which he takes as visualizing their degree of understand-
ability and hence agreeableness.
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Figure |. Euler’s diagram visualizing the relative agreeable-
ness of various simple ratios of sound pulsation, from his
Tentamen (1739).

At the same time, though, this diagram represents the
coincidences between the sound “pulses” and hence rep-
resents geometrically the interrelation between the sound
waves. Implicitly, Euler’s two different meanings converge:
agreeableness correlated with the relative congruity of the
two wave forms, which Hermann von Helmholtz made
explicit in his physical theory of consonance more than a
century later (with due acknowledgment to Euler).™ Still,
in his Tentamen Euler worked mostly within the older
temperaments based on whole-number ratios, rather than
the newer equal temperament, which requires division of
the octave into 12 equal semitones, each given by the
irrational factor ¥/2. For instance, J. S. Bach’s Wobltempi-
erte Klavier (1722) required a temperament capable of
playing in all 24 major and minor keys.'* As we shall see,
Euler returned to this issue in later life.

With his chosen limitations, Euler’s quest for a precise
degree of agreeableness informed his mathematical

®In his earliest writings, Euler seems unaware of Leibnitz’s 1712 comment that the beauty of music ““consists only in the harmonies of numbers and in a calculation,
which we do not perceive but which the soul nevertheless carries out, a calculation concerning the beats or vibrations of sounding bodies, which are encountered at
certain intervals.” See Walter Buhler, “Musikalische Skalen und Intervalle bei Leibniz unter Einbeziehung bisher nicht verdfftentlichter Texte I,”” Studia Leibnitiana 42
(2010), 129-161.

"Among the very few other attempts, note George David Birkhoff, Aesthetic Measure, Harvard University Press, Cambridge, Massachusetts, 1933. Birkhoff's basic
equation, M = % (where M is the aesthetic measure, O the order, and C the complexity), is consistent with Euler’s approach.

"C. S. (Charles Samuel) Smith, Leonhard Euler’s Tentamen Novae Theoriae Musicae: A Translation and Commentary, University Microfilms, Ann Arbor, 1974, 27-28.
E33, 1Il.1.197-427; Preface. All citations from this work will follow this translation, indicating also the chapter and section number.

2The traditional hierarchy of musical intervals simply assumed that “multiple’” ratios, such as 1:n, and “‘superparticular’’ ratios, of the form (n + 1):n, were superior to
other classes of ratios, without any further justification beyond their greater *‘simplicity.”

"3Hermann von Helmholtz, On the Sensations of Tone as a Physiological Basis for the Theory of Music, Alexander John Eliis (ed. and trans.), 2d English, Dover
Publications, New York, 1954, 229-233.

4 thank Walter Biihler for pointing out to me that Euler discusses equal temperament in his early ‘Adversaria mathematica’” (1726, f. 45r) and briefly in Euler’s Tentamen,
204-205 (IX§17). Bach does not call for ““equal’” but “well”” (presumably unequal) temperament, about whose detail there remains much controversy. For the continuing
mathematical effects of earlier controversies about tuning, see Peter Pesic, ‘‘Hearing the Irrational: Music and the Development of the Modern Concept of Number,”’ Isis 101
(2010), 501-530. See also Ross W. Duffin, How Equal Temperament Ruined Harmony (and Why You Should Care), W. W. Norton, New York, 2007.
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rankings. From his decision to assign the degree 1 to 1:1
and 2 to 1:2, Euler notes that “by the simple operation of
halving or doubling, the degree of agreeableness is chan-
ged by unity.” Accordingly, to ratios of the form 1:2” he
assigns the degree (1 + 1), because “the degrees progress
equally in ease of perception. Thus, the fifth degree is
perceived with more difficulty than the fourth,” and so on.
In light of this, he chooses the degree n always to be
integral, never fractional “since in this case the ratio would
be irrational and impossible to recognize,” implying an
underlying rationality to the felt quality of agreeableness.
For ratios of the form 1:p, where p is prime, he assigns the
degree p, “by induction” (as he puts it), assigning both 1:3
and 1:4 to the same degree, namely 3. He then argues that
1:pq (where both p and g are prime) has degree p + g — 1.
A few more steps lead him to the general conclusion that
for any composite number m composed of n prime factors
whose sum is s, the ratio 1:m has the degree of agree-
ableness s — n 4+ 1. He concludes that the degree of a series
of proportions such as p:q or p:q:¥ (where p, g, r are primes)
is the same as of 1:pg or 1:pgr, respectively, where Euler
calls the least common multiple of these primes the expo-
nent of the ratio.'> Hence, he assigns to 1:pgr or 1:p:q:r the
degree p + g + r— 2. Thus, the fifth (2:3) has degree 5 —
2 + 1 = 4, the same as 1:6. He sets out the result in a table
that goes far beyond the traditional set of musical ratios
(Fig. 2).

Euler’s mathematical schema leads him to include ratios
that have no precedent in traditional music theory; the most
important sixteenth-century theorist, Gioseffo Zarlino, had
argued that only numbers up to 6 (the senario, as he called
them) are allowable in musical ratios, but Euler makes a
case for going beyond this limit. In so doing, and in the
whole layout of his table of intervals, Euler makes conso-
nance and dissonance really a matter of degree, as opposed
to the traditional tendency to distinguish sharply between
them. He is led to this notably innovative step by his
mathematics, which phrases both in the same general
language of ratios, as well as by his awareness of the
expressive power of dissonance.

Euler thus found a new numerical index that, to some
extent, correlates with traditional (and aural) judgments of
relative consonance but is far more precise. Consider, for
instance, a major triad formed in the ratios 4:5:6. As noted
above, its degree will be the same as that of 1:4-5-6 = 1:120,
determined by the prime factors of its exponent,
60 = 2% x 3 x 5, in which s =12 and # = 4, so that the
degree in both cases is s — 7 + 1 = 9. Euler’s arguments
explain, for example, why a major triad (such as C-E-G,
with ratios 4:5:6) sounds “happier” than a minor triad (E-G-
B, in ratio 5:6:7). In his scheme, the major triad is in the
ninth, the minor in the fourteenth degree; the minor triad is
therefore more “sad” because “joy is conveyed by those

Gr. IL ave, |GrolIX - 515 3:64. | 1:160,
I:2. I :18. I X 1:25, I:356. 5:32.
Gr. III.| 2:9. 2:7 1:28. |'Gr. X. | 1:102.
X5 1:24. 1:30. 4:7. 1342, 2:81,
I:i4. 3:8. 2115, 1:45. 3:14 1:216.
Gr. IV. I:32. 10 510, 6:7. 8:27.
1:6. |Gr. VII.| 5:0: 1! 60, I: 50 11288,
2:3. 1592 I:40. 3:20. | 2:25 9!32.
I:8. 1113, s 415, 1:56. I:384.
T e KL 1154 5:12, it 1 3:128.
I:5. 1:20. 2:27. 1:80. r:go. | Ii512. |
1o, 415, I:72. 5:I6. 2:45.
o 1:27. 8:9 I:81. 5:18.
3:4. I!36. I:906. I:108. 9:10.
L:16. l 4:9. 3:32. 4:27. 1:120
Cr V| 4% 1:128. | T:I44 3:40.
I'ID‘ 3:16. , Gr. IX. ] 9:16. 5:24.
i 1:64. 1:21. I1:192. 8:15

Figure 2. Euler’s table of the first ten degrees of agreeable-
ness of musical intervals.

things which have a simpler, more easily perceptible order,
and sadness is conveyed by those things whose order is
more complex and more difficult to perceive.”16 Euler
presented his species in compendious tables that visually
juxtapose musical and mathematical notations (Fig. 3),
showing how important he considered both and how he
sought to bring them together.

Still, Euler’s scheme has some disturbing features. As
noted earlier, his approach assigns the same degree to an
interval between fwo notes (in the example above, 1:pgr) as
to a triad (here, p:q:r), which seems in conflict with the
more fundamental status of triads in the musical framework
of conventional harmony. More troubling, Euler’s scheme
assigns the same degree to the most familiar (and “conso-
nant”) triadic harmony C-E-G as well as to a number of
strong dissonances (such as 3:7 or 4:7), according to the
older, qualitative listings of intervals. He later returned to
the issue of including the previously proscribed number 7.
But he never really addressed the fundamental problem
that his system assigns the same degree to the dissonant
major seventh chord C-E-G-B as it does to the consonant
triad C-E~G."

Music and Number Theory

To simplify calculations in his 7entamen, Euler was one of
the first to apply logarithms to musical ratios.'® This fairly
obvious musical application then induces Euler to take a
new mathematical step, because expressing a logarithm’s
magnitude calls for the use of irrational numbers in general.
For example, Euler notes that “since the measure of the
octave is log 2, which is 0.3010300 according to the table,
and since the fifth is log 3 — log 2, or 0.1760913, the ratio of
the octave to the fifth will be approximately 0.3010300/

"SNote that both the sum and number of terms of 1:p:q:r are increased by 1 compared to p:q:r, so that the degrees s —n + 1 of both ratios are the same.
1Smith, Euler’s Tentamen, 72 (I1§14). For further discussion of the context and implications of the status of the minor mode, see Pesic, Music and the Making of

Modern Science, chap. 9.

7As pointed out by James Jeans, Science & Music, Dover Publications, New York, 1968, 1565-156, who uses the ratios 8:10:12:15 for the major seventh chord.
"83mith, Euler’s Tentamen, 119-122 (IV§35-39). Euler seems unaware that he was anticipated in this by Bishop Juan Caramuel de Lobkowitz in 1670 and Christiaan
Huygens in 1724, as well as by Leibniz; see Buhler, ‘“Musikalische Skalen und Intervalle bei Leibniz,” 159-161.
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Figure 3. Euler’s musical illustration of the first ten species of harmony, according to his degrees of agreeableness.

0.1760913.” The advantage of using these musical loga-
rithms challenged Euler to find workable approximations
to their infinite decimal expressions: “In order to reduce
this to smaller numbers, this ratio is changed into the fol-
lowing fraction:

1+
1+

2+1

2+

From this we can derive the simple ratios 2:1, 3:2, 5:3, 7:4,
12:7, 17:10, 29:17, 41:24, 53:31, of which the last is the
closest to the true ratio.”" These successive approxima-
tions come from truncating the fraction at successive points
downward in the denominator of this continued fraction, a
name John Wallis had coined only a few years previously
(1695). Euler seems to have been the first to apply con-
tinued fractions to music, thereby reducing the irrational
expressions of logarithms to a sequence of “simple ratios,”
in accordance with his musical starting point.*”

In the years following the writing of the Tentamen (and
as he prepared for its publication in 1739), Euler wrote “On
continued fractions” (1737), the first sustained treatment of
this new kind of mathematical object.?' He realized that

continued fractions, as they emerged in his musical treat-
ment, provided an ideal means for expressing irrational
numbers. In this paper, Euler presented the first proof that e
is irrational by writing it as a continued fraction,

e=2+

1+

2+

1+

1+

4+
1+
1+
6+———

1+ 1,
1+ -

Euler often returned to continued fractions throughout his
later work; although he applied them widely, he was first
drawn to use them in addressing musical problems.*?

Nor were the mathematical effects of his musical work
restricted to this one particular technique. Though Euler’s
name later became so closely associated with number
theory, his interest in this field began after his earliest work

19Smith, Euler’s Tentamen, 121 (IV§38).
Dlpid., 16.

2"Leonhard Euler, “An Essay on Continued Fractions,” Myra F. Wyman and Bostwick F. Wyman (trans.), Theory of Computing Systems 18 (1985), 302-305. Original

text E71, 1.14.187-216.

22For his proof of the irrationality of e, see Euler, “An Essay on Continued Fractions.” See also the discussion in Sandifer, The Early Mathematics of Leonhard Euler,
234-248; C. Edward Sandifer, How Euler Did It, Mathematical Association of America, Washington, DC, 2007, 185-190.
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on music. In fact, the period of his greatest activity in
number theory took place while he was preparing the
Tentamen, so it was well after his arrival in St. Petersburg in
1727 and his subsequent correspondence with Christian
Goldbach (who moved to Moscow shortly after Euler’s
arrival). Thus, in December 1729, Goldbach wrote Euler to
ask him whether “Fermat’s observation [is] known to you,
that all numbers 22" + 1 are prime? He [Fermat] said he
could not prove it; nor has anyone else done so to my
knowledge.”*® Euler’s rather indifferent response indicates
that, even by that date, he was not greatly interested in this
fundamental question. Only after Goldbach prodded him
in a subsequent letter did Euler catch fire; he then dis-
proved Fermat’s conjecture by showing that the fifth Fermat
number, 22 + 1 = 4,294,967, 297, is divisible by 641.
After that, Euler read Fermat ever more closely and took up
number theory with particular passion. His first result already
underlines his phenomenal abilities as a calculator; such a
factorization, without any mechanical aids, required great skill
combined with mathematical acumen.* The same fascination
with the pure manipulation and calculation of numbers also
pervades his musical Tentamen, of which the tables shown
previously are only a small sample of the many pages he
devotes to lists of numbers connected with his musical
scheme. Indeed, given Euler’s ability to execute lightning
mental computations of great complexity, one can readily
imagine that he may have been able to compute degrees of
agreeableness for what he was hearing, perhaps even in “real
time.” At the least, his Tentamen contains his retrospective
account of musical awareness in terms of explicit arithmetic.
Even before he began his correspondence with Goldbach,
Euler’s absorption in the intricate arithmetic of his music theory
provided fertile ground on which his ensuing interest in num-
ber theory could grow. The modern concept of “pure
mathematics” should not blind us to the many ways in which, in
Euler’s time, no hard barrier separated it from the “applied”
branches of what we now call physics, engineering, or music
theory, all disciplinary names that he would not have known,
much less separated absolutely. It was natural for Euler to fol-
low his intricate musical arithmetic into the further studies of the
properties of numbers that came to be called “number theory.”
According to André Weil, Euler’s 1729 work was the “rebirth” of
number theory, as Euler’s work on the harmonic series and its
generalizations marked “the birth of analytic number theory.”*
Looking back to the Tentamen, many of Euler’'s musical
arguments directly imply arithmetical problems that lead
straight to the more general questions he later addressed
about the properties of numbers. His definition s — n + 1
for the gradus suavitatis of a musical interval involves
counting the 7 prime factors of the interval’s exponent and
their sum s; these became central topics in his ensuing

number-theoretical work. The Pythagoreans had already
investigated perfect numbers (each equal to the sum of its
proper divisors, such as 6 = 1 4+ 2 + 3) and pairs of ami-
cable numbers, for which each is the sum of the other’s
proper divisors, such as 220 and 284. Both types of num-
bers became important to Euler, but he had already laid the
groundwork for their study in his Tentamen. For any
number m, Euler’s s(m) is the sum of its proper divisors. In
a 1747 article, Euler further defined o(m) as the sum
of all the divisors of m, including m itself, so that
o(m) = s(m) + m. Then two numbers j and m are amica-
ble if 6(m) = m + j = a(j), a simple symmetric condition.?
Euler also discovered 30 new pairs of amicable numbers,
compared to the four known previously. His 1747 paper
lists them in a format that is strikingly similar to his diagrams
ranking musical intervals in the Tentamen.

Music and the Birth of the Topological Approach
The influence of Euler’s musical work is also discernible in
a very different arena of his activity, the new realm of
mathematics that emerged with his famous solution to the
problem of whether one could make a complete circuit of
the Konigsberg bridges (Fig. 4), returning to the starting
point by crossing each of the seven bridges only once.
Aslate as 17306, Euler wrote that he considered this problem
to be “banal,” because its solution “bears little relationship to
mathematics, and I do not understand why you expect a
mathematician to produce it, rather than anyone else, for the
solution is based on reason alone, and its discovery does not
depend on any mathematical principle.”®” Later that same
year, however, Euler must have changed his mind, for he now
took what later would be called a “topological” approach to
this problem as an example of a branch of geometry “that has
been almost unknown up to now; Leibniz spoke of it first,
calling it the ‘geometry of position’ [geometria situs]. This

Figure 4. Euler's diagram of the city of Konigsberg, the
Kneiphof island (A), and the seven bridges over the River
Pregel, a, b, ..., g.

2Mark McKinzie, “‘Euler's Observations on Harmonic Progressions,’” in Euler at 300: An Appreciation, Robert E Bradley, Lawrence A. D’Antonio, and C. Edward
Sandifer (eds.), Mathematical Association of America, Washington, D.C., 2007, 131-141. See also M. Bullynck, “Leonhard Eulers Wege zur Zahlentheorie,” in

Bredekamp and Velminski, Mathesis & Graphé, 157-175.

24| thank Noam Elkies for pointing out to me that 641 is the smallest natural candidate divisor of F5; even so, demonstrating that it is indeed a divisor requires lengthy

calculation.

2André Weil, Number Theory: An Approach Through History from Hammurapi to Legendre, Birkhauser, Boston, 1984, 267, 3.
25William Dunham, Euler: The Master of Us All, Mathematical Association of America, Washington, D.C., 1999, 7-12. See E152, 1.2.86-162, and also Sandifer, How

Euler Did It, 49-62.

27Casper Hakfoort, Optics in the Age of Euler: Conceptions of the Nature of Light, 1700-1795, Cambridge University Press, Cambridge, 1995, 60-65, at 61.
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Figure 5. Euler’s illustrations of polyhedra in his “Elements of the doctrines of solids” (1752).

branch of geometry deals with relations dependent on posi-
tion alone, and investigates the properties of position; it does
not take magnitudes into consideration, nor does it involve
calculation with quantities.”*®

At that point, Euler generalized the Kénigsberg prob-
lem to “any configuration of the river and the branches
into which it may divide, as well as any number of bridges,
to determine whether or not it is possible to cross each
bridge exactly once.” Although Euler’s 1736 paper is
generally regarded as the origin of graph theory, that term
was only introduced by J. J. Sylvester in 1878 and its ter-
minology codified by George Pdélya and others about
1936.% Euler reduced topography to alphabetic symbol-
ism and derived simple rules, though without defining a
numerical index that would “involve calculation with
quantities,” as he put it.

Euler later devised such an index when he returned to
the “geometry of position” in his “Elements of the doctrines
of solids” (1752), the first of two papers on the relations
between the number of vertices (V), edges (), and faces
(F) of polyhedra (Fig. 5).%°

Euler’s crucial innovation here was to introduce the
concept of the edge (acies) of a polyhedron, which, curi-
ously enough, had never before been explicitly defined.
Euler drew from Euclid the concept of a polyhedron’s faces
(facies) and its angulus solidus, here meaning not “solid
angle” (in its present sense) but the point from which such
an angle emerges, later called a “vertex” by Legendre
(about 1794). If a solid polyhedron is bounded by plane
faces, Euler concluded that “the sum of the number of solid
angles plus the number of faces exceeds the number of
edges by 2, or V+ F — E =2, “Euler’s polyhedral for-
mula.” Here the requirement of closure for the polyhedron
corresponds to the connectedness of an Euler walk in the
Konigsberg problem ' By identifying V, F, and E, Euler
now could define the index V+ F - E = 2.

The structure of this relation is strikingly similar to the
degree of agreeableness of musical intervals. Both V + F—
E=2and s— n+ 1 = d provide a general categorization
of polyhedra and musical intervals, respectively, subsum-
ing their individual differences under a larger genus,
although Euler’s musical degree was more general than his

28The Seven Bridges of Konigsberg,” in J. R. Newman (ed.), World of Mathematics, Simon and Schuster, New York, 1956, 1:573-580 (emphasis added). Original text
E53, 1.7.1-10. See also B. Mahr and W. Velminski, “‘Denken in Modellen: Zur Lésung des Kénigsberger Briickenproblems,” in Bredekamp and Velminski, Mathesis &

Graphé, 85-100.

29See Norman Biggs, E. Keith Lloyd, and Robin J. Wilson, Graph Theory, 1736-1936, Clarendon Press, Oxford, 1986. See also W. Velminski (ed.), Leonhard Euler, die
Geburt der Graphentheorie: Ausgewéhite Schriften von der Topologie zum Sodoku, Kulturverlag Kadmos, Berlin, 2009.
%OElementa doctrina solida,” E230, 1.26.71-93; “Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita” E231, 1.26.94—

109. For commentary, see Sandifer, How Euler Did It, 9-18.

3"Note that Euler states his conclusion verbally, rather than algebraically. For an excellent presentation of the details of both arguments and their connections, see David
S. Richeson, Euler's Gem: The Polyhedron Formula and the Birth of Topology, Princeton University Press, Princeton, New Jersey, 2008. See also Debnath, The Legacy

of Leonhard Euler, 153-173.

© 2013 Springer Science+Business Media New York, Volume 35, Number 2, 2013 41



polyhedral formula, which only later was generalized to the
“Euler characteristic” y = V+ F — E. Indeed, there was
scarcely any precedent before Euler for defining such an
index where it did not obviously present itself. The degree
of a polynomial equation is far more manifest in its alge-
braic expression than would be the putative definition of
the “degree” of a polyhedron, much less of a musical
interval, where it had no previous meaning. In his musical
work, Euler first devised the general classificatory strategy
he then applied to the polyhedron problem by defining a
numerical index that would establish a clear taxonomy
unifying all convex polyhedra.

Euler thus discovered not just the first important insights
that later grew into the field of combinatorial topology, but,
more deeply, discovered indexing as a crucial (and novel) tool
of what became the topological approach itself. Music was a
peculiarly appropriate first venue for this new topological
thinking, because musical intervals do not have the kind of
spatial structure that seems to govern elementary geometry.
The lack of visible evidence—and his judgment of the insuf-
ficiency of the traditional criterion of “simplicity” of ratio—
opened the door to his definition of degree, which he ulti-
mately tied to his auditory criteria of suavitas. After Euler took
this initial step away from the traditional givens of mathemat-
ics, such as pure ratios, it was much easier to think in essentially
the same way when he came to the Kénigsberg problem and
then to polyhedra. For each, Euler devised a degree that would
have an invariant significance, bringing together particular
cases previously considered quite distinct.**

Later Musical Writings

During the remainder of his long life, Euler returned to
musical questions several times, reaffirming and reconsidering
his youthful work in the Tentamen, especially the issue of
intervals involving the number 7. In a series of papers
beginning in 1760, Euler was among the first to argue that
the number 7 was essential to the chord he and his con-
temporaries were beginning to call the dominant seventh
(Fig. 6).%

Euler rightly notes the importance of this dissonant chord in
the heightened expressivity of what he calls “modern,” as
opposed to “ancient,” music. This continues and complements
his account of musical “sadness,” mentioned earlier. Euler also
addressed the issue of equal temperament, showing that he
had become aware of its prevalence and musical importance,
although he argued that “the ear is not bothered by this
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Figure 6. (A) Euler's example of a dominant seventh chord
built on the note C (identified by the C clef on the bottom line
of the staff): C, E, G, Bb, as dominant seventh in the key of F.
(B) A progression cited by Euler outlining the key of C
especially through the penultimate dominant seventh chord
(marked ). Note the parallel octaves between the lower
voices, from the second to the third (D-E) and fourth to the
fifth (F-G) chord. From “On the True Character of Modern
Music” (1764).

irrational proportion,” because it can be approximated by
whole-number ratios.** Thus he remained in this sense faithful
to the Pythagorean vision of whole numbers as the true basis
of music. Nonetheless, Euler praises “modern” music as
“sublime, because its character consists in a higher degree of
harmony,” compared to ancient music as “common [com-
munel,” in the sense of adhering to common harmonic
practice.®® Yet he never cites a single musical example that
would give specific insight into his compositional tastes; the
only composer he ever mentions is Rameau, but then only as
a theorist. Disconcertingly, his sole extended musical

32Modern music theorists have followed Euler’s lead in exploring the geometry and topology of music. Martin Vogel, On the Relations of Tone, V. Kisselbach (trans.),
Verlag fur Systematische Musikwissenschaft, Bonn, 1993, 108, argues that Euler’s 1773 work was a precursor of Arthur von Oettingen’s 1866 concept of the Tonnetz,
the generalized tonal pitch space (‘‘tone net”’) taken up by the theorist Hugo Riemann, but already present in Euler’s Tentamen according to Michael Kevin Mooney,
“The ‘Table of Relations’ and Music Psychology in Hugo Riemann’s Harmonic Theory” (Ph.D. diss., Columbia University, New York, 1996), 29-30. For a stimulating
presentation of musical theory in relation to topology, see Dmitri Tymoczko, A Geometry of Music: Harmony and Counterpoint in the Extended Common Practice,

Oxford University Press, New York, 2011.

33See his ““Conjecture on the reason for some dissonances generally heard in music’” (1760), E314, lll.1.508-515; ““On the True Character of Modern Music’’ (1764),
E315, II.1.516-539; ““‘On the True Principles of Harmony Represented in the Mirror of Music™ (1773), E457, 1Il.1.568-587, discussed further in Pesic, Music and the
Making of Modern Science, chap. 10. Euler’s priority in his analysis of the dominant seventh was noted in 1840 by Francois-Joseph Fétis, History of Harmony, Mary |.
Arlin (trans.) Pendragon Press, 1994, 97, although in general Fétis is very critical of Euler's approach (see 69-84). See also Benjamin Downs, ‘‘Sensible Pleasure, Rational
Perfection: Leonhard Euler and the German Rationalist Tradition,”” Mosaic: Journal of Music Research 2 (2012), http://mosaicjournal.org/index.php/mosaic/article/

view/41/45.
4See his ““Conjecture”” (1760), E314, 197-16.
35See “On the True Character of Modern Music” (1764), E315.
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example is a formulaic cadence that violates elementary rules
of voice leading by allowing parallel octaves (Fig. 6B). Were
these solecisms just typos, or did the great mathematician
finally have a tin ear?®® Or was he quoting crude hymnody he
remembered from the Calvinist services of his childhood?
Perhaps our awe at Euler’'s seemingly superhuman
abilities would have been tempered by hearing what really

went on during his musical evenings. In any case, con-
templating his musical preoccupations augments our sense
of his humanity. Euler’s serious and long-sustained
engagement with music significantly affected his work and
helped him open doors into new mathematical realms.

3| thank Noam Elkies for pointing out to me these problems in Euler’s voice leading. Also thanks to Walter Biihler, Alexei Pesic, and Paul Espinosa (Curator, George
Peabody Library Rare Books, Johns Hopkins University) for their generous help. Figures 4 and 5 appear courtesy of the George Peabody Library, The Sheridan

Libraries, The Johns Hopkins University.
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