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Emerging from music and the visual arts, questions about hearing and seeing deeply affected
Hermann Helmholtz’s and Bernhard Riemann’s contributions to what became called the
‘‘problem of space [Raumproblem],’’ which in turn influenced Albert Einstein’s approach to
general relativity. Helmholtz’s physiological investigations measured the time dependence of
nerve conduction and mapped the three-dimensional manifold of color sensation. His con-
current studies on hearing illuminated musical evidence through experiments with mechanical
sirens that connect audible with visible phenomena, especially how the concept of frequency
unifies motion, velocity, and pitch. Riemann’s critique of Helmholtz’s work on hearing led
Helmholtz to respond and study Riemann’s then-unpublished lecture on the foundations of
geometry. During 1862–1870, Helmholtz applied his findings on the manifolds of hearing and
seeing to the Raumproblem by supporting the quadratic distance relation Riemann had
assumed as his fundamental hypothesis about geometrical space. Helmholtz also drew a ‘‘close
analogy … in all essential relations between the musical scale and space.’’ These intersecting
studies of hearing and seeing thus led to reconsideration and generalization of the very concept
of ‘‘space,’’ which Einstein shaped into the general manifold of relativistic space-time.
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I admire ever more the original, free thinker Helm[holtz].

Albert Einstein, letter to Mileva Marić, August 18991

Introduction

The protean activities of Hermann Helmholtz resonated sympathetically with

Albert Einstein, first expressed in this youthful love letter to his fiancée. Around

1903, Einstein and his friends in the ‘‘Olympia Academy’’ read Helmholtz as well

as Bernhard Riemann, the visionary mathematician whose work on curved mul-

tidimensional manifolds was to prove central in the development of general

relativity.2 Both Einstein and Helmholtz were deeply interested in fundamental

* Peter Pesic is Tutor and Musician-in-Residence at St. John’s College, Santa Fe, New
Mexico.

Phys. Perspect. 15 (2013) 256–294
� 2013 Springer Basel

1422-6944/13/030256-39

DOI 10.1007/s00016-013-0109-1 Physics in Perspective

256



principles of science, such as the law of conservation of energy that Helmholtz

advanced so powerfully and that Einstein inscribed in relativistic dynamics. Both

were devoted to music; both were concerned with light, Helmholtz with its

physiology, Einstein with its speed and interactions with matter. Both were

engaged by what became called the ‘‘problem of space [Raumproblem]’’ that

emerged in the wake of Riemann’s work: what are the possible geometries of

geometrical space and how do they relate to physical experience? Though hearing,

seeing, and curved space may seem unrelated topics, they were connected in the

activities of Riemann and Helmholtz and ultimately of Einstein, who used their

ideas to shape the general theory of relativity.

Helmholtz’s deep involvement in the nature of vision and hearing rested on his

concerns with music and visual art, as well as on his medical and physiological

interests. The dialogue between these arts and their respective sensory modalities

fed strongly into his later investigations into the possible ‘‘spaces’’ of experience, in

the sense of the multidimensional manifolds considered in Riemann’s seminal

1854 lecture, ‘‘On the Hypotheses that Lie at the Basis of Geometry.’’ Yet

Helmholtz did not read this then-unpublished work until after responding to

Riemann’s posthumous, unfinished 1866 work on ‘‘The Mechanism of the Ear.’’

This little-known chronology gives important context for Helmholtz’s ensuing

1868 response, ‘‘On the Factual Foundations of Geometry,’’ which relied on his

studies of sound and color to set forth an empirical basis for Riemann’s hypoth-

eses. As we shall see, Einstein himself noted the direct line leading from

Helmholtz’s and Riemann’s work on the sensory manifold to the curved, non-

Euclidean manifold that is the centerpiece of the world geometry at the heart of

general relativity.

Helmholtz’s Investigations of Vision and Hearing

Helmholtz’s extraordinary life trajectory, spanning activity and mastery in many

fields, was already celebrated in his own lifetime, well before Einstein’s birth.

Though deeply interested in physics from early youth, family circumstances dic-

tated Helmholtz’s initial career as an army surgeon (1843–1848). Even while

completing his onerous duties, he completed his seminal 1847 essay, ‘‘On the

Conservation of Energy,’’ which was of great importance in establishing the fun-

damental status of that principle.3 In his ensuing activities as professor of

physiology at Königsberg (1849–1855), Helmholtz (figure 1) undertook a charac-

teristically exhaustive and extensive study of many aspects of nerve action, which

began with innovative experimental studies. He succeeded in measuring the

velocity of propagation of nerve impulses (1850), a feat others had doubted was

even possible, given the great celerity of those impulses.4 To accomplish this,

Helmholtz had to invent a new myograph (figure 2). This led, later that year, to his

general study of methods of measuring the extremely small time intervals involved

in this new arena of experimental physiology, for which time itself became both an
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experimental desideratum and an avenue to the attendant theoretical and philo-

sophical questions, to which he and many others had been alerted by the work of

Kant: were time and space deduced from experience or projected from the

Fig. 1. Hermann Helmholtz (1821-1894). Source: Helmholtz, Wissenschaftliche Abhandlungen.

Erster Band (ref. 3), frontispiece.

Fig. 2. Helmholtz’s myograph, used to measure the time required for nerve conduction in the

thigh muscle of a frog. Source: É.J. Marey, La machine animale: locomotion terrestre et aérienne.

Quatriéme Édition (Paris: Ancienne Librairie Germer Bailliere et Cie, 1886), p. 30.
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structure of the mind?5 Thus, Helmholtz’s tachistoscope (figure 3) was designed to

obviate the extraneous effects of eye movement by illuminating the eye with an

extremely short burst of light, giving a nearly instantaneous image of the eye’s

position.

The annus mirabilis 1850 also included Helmholtz’s most famed optical

invention, the ophthalmoscope, still in use today to examine the retina and the

fundus of the eye.6 But beside this well-known medical instrument, he also

introduced many others, including the ophthalmotrope, a mechanical model to

demonstrate eye movements (figure 4). Such devices helped him develop a ‘‘sign

theory’’ that associated each such movement and its muscular state with the

attendant visual perceptions, no longer considered as realities in themselves but as

symbols of underlying physiological states and their external correlates.7

Here, as throughout his career, Helmholtz used his experimental findings to

ground his theoretical work.8 Thus, his work on the mechanisms of vision led to his

1855 paper, ‘‘On the Theory of Complex Colors,’’ in which he revived the three-

color hypothesis of Thomas Young and gave it new and fuller support from his

own investigations.9 Helmholtz’s outpouring of specialized researches on many

aspects of human vision finally led to his massive Handbuch der physiologischen

Optik (Handbook of Physiological Optics), whose first edition appeared in three

parts during 1856–1866, a summa whose synthetic breadth and systematic rigor put

Fig. 3. Helmholtz’s tachistoscope, used to avoid involuntary movement of the eye by very brief

illumination of test images. Source: Helmholtz, Handbuch der physiologischen Optik (ref. 10),

p. 567; Treatise on Physiological Optics. Vol. II (ref. 11), p. 197.
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the entire field of physiological optics on a new plane of activity by applying

physical principles to anatomical structures.

In part, Helmholtz accomplished this by including a historical dimension in his

work, both to establish its sources and to make explicit its fundamental presup-

positions. In the midst of his experimental studies, he was constantly looking to the

larger theoretical questions he hoped to resolve, which historical awareness helped

him formulate more pointedly. Thus, his awareness of Young’s three-color

hypothesis helped him formulate the relation between human physiology and the

purely physical theory of color presented by Isaac Newton. Helmholtz also

incorporated the 1853 work of Hermann Grassmann on color mixing to provide

various geometrical representations of color perception (figure 5 upper), for which

Helmholtz used the terms ‘‘curve’’ (Curven), ‘‘color circle’’ (Farbenkreis), ‘‘color

cone’’ (Farbenkegel), or ‘‘color pyramid’’ (Farbenpyramide) in his 1867 Hand-

buch.10 In this edition, he does not use the terms ‘‘manifold’’ or ‘‘space’’ (Raum),

terms whose unfolding and gradually expanding meanings are crucial to the

developments we will examine.

Helmholtz used these diagrammatic representations to clarify three indepen-

dent parameters of perceived color, which today are called hue, saturation, and

lightness, and which his work was extremely important in clarifying in the face of

pervasive confusion about the exact meaning of these terms and the nuances

between them.* In brief, the linear sequence of the Newtonian spectrum, arranged

Fig. 4. Helmholtz’s ophthalmotrope, a model used to study basic mechanisms of eye movements.

Source: Helmholtz, Handbuch der physiologischen Optik (ref. 10), p. 326; Treatise on Physiological

Optics. Vol. II (ref. 11), p. 197.

* In present terminology, hue is the degree to which an area appears similar to the perceived
colors red, yellow, green, blue or a combination of them; saturation its colorfulness relative
to its own brightness; lightness (or value) its brightness relative to a similarly illuminated
white.

260 P. Pesic Phys. Perspect.



from red to violet, is perceived by the human eye in a decidedly nonlinear way.

Helmholtz’s diagram (figure 5 lower) shows that, to mix colored lights to form

white, a different amount of yellow must be mixed with indigo, as compared with

the relative amounts of orange and cyan-blue needed to produce white. In this

diagram, these differences show up in the asymmetric shape of the overall curve,

whose skew toward the red-orange side reflects the higher sensitivity of human

daytime vision to those colors, as compared with the blue-violet side.

In the course of this work, Helmholtz also devoted attention to the possibility of

describing the perceived distances between colors

on the principle of the musical scale, because this seemed to be the best method

for physiological reasons. Thus, colours whose wave-lengths are in the same

ratio as the interval of a semi-tone between two musical notes are always at

equal distances apart in the drawing [figure 6 upper]; or, to put it mathemati-

cally, equal distances in the drawing correspond to equal differences between

the logarithms of the wave-lengths.11

Fig. 5. (upper) Helmholtz’s representations of Newtonian color theory using a ‘‘color circle’’ in

which more saturated colors are near the circumference; this leaves out differences in luminosity.

(lower) Helmholtz contrasts this with a markedly asymmetric curve showing the relation between

colors of equal luminosity. Source: Helmholtz, Handbuch der physiologischen Optik (ref. 10),

pp. 325, 332; Treatise on Physiological Optics. Vol. II (ref. 11), pp. 282, 288.
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Helmholtz approaches this parallelism in terms of Newton’s imposition of the

musical scale on the chromatic spectrum (figure 6 lower).

The different sensations of colour in the eye depend on the frequency of the

waves of light in the same way as sensations of pitch in the ear depend on the

frequency of the waves of sound; and so, many attempts have been made to

divide the intervals of colour in the spectrum on the same basis as that of the

division of the musical scale, that is, into whole tones and semi-tones. Newton

tried it first. However, at that time the undulatory theory was still undeveloped

and not accepted; and not being aware of the connection between the width of

the separate colours in the prismatic spectrum and the nature of the refracting

substance, he divided the visible spectrum of a glass prism, that is, approxi-

mately the part comprised between the lines B and H, directly into seven

intervals, of widths proportional to the intervals in the musical scale…; and so

he distinguished seven corresponding principal colours; red, orange, yellow,

green, blue, indigo, and violet.12

Helmholtz’s spectral diagram (figure 6 upper) shows only about nine semitones

(hence slightly more than a major sixth) between red (B) and violet (H), not the

Fig. 6. (upper) Helmholtz’s plate showing the solar spectrum with the more prominent

Frauenhofer lines indicated in capital letters (above the corresponding dark lines) and a numerical

scale (below) showing the correspondence between musical intervals of a semitone (labeled by

successive numbers) and the spectral colors. The Frauenhofer C line roughly corresponds to red; E to

green; F to ‘‘cyan-blue’’; H–L to violet. Source: Helmholtz, Handbuch der Physiologischen Optik.

Dritte Auflage. Zweiter Band (ref. 11), facing p. 54; Treatise on Physiological Optics. Vol. II (ref. 11),

facing p. 64. (lower) Isaac Newton’s comparison between the musical scale and the spectral colors.

Newton introduced indigo and orange to fill out the analogy between a complete spectrum and the

seven diatonic notes in an octave. Source: Is. Newton, ‘‘An Hypothesis explaining the Properties of

Light, discoursed of in my several Papers’’ [1675-1676], in Thomas Birch, The History of the Royal

Society of London. Vol. 3. A Facsimilie of the London Edition of 1756-57 (New York and London:

Johnson Reprint Corporation, 1968), pp. 248-305, on p. 263.
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twelve semi-tones needed to span an octave between them, the overall interval

Newton had assumed. In his diagram, Helmholtz’s entire spectrum (A-R) spans

sixteen semi-tones, almost an octave and a fourth, because his experimental work

had shown that the ultraviolet wavelengths (L-R)

are not invisible, although they certainly do affect the eye comparatively much

less than the rays of the luminous middle part of the spectrum between the lines

B and H. When these latter rays are completely excluded by suitable apparatus,

the ultra-violet rays are visible without difficulty, clear to the end of the solar

spectrum.13

Thus, his ‘‘scale of colours analogous to the notes of the piano,’’ with yellow as

middle C, extends from the ‘‘end of Red’’ as the F# below middle C to the highest

visible ultraviolet frequency as the B above it.14

These investigations showed him that ‘‘this comparison between music and

colour must be abandoned,’’ both because ‘‘the spectrum is broken off arbitrarily

at both ends,’’ hence its divisions into colors are ‘‘more or less capricious and

largely the result of a mere love of calling things by names.’’15 Most of all, the eye’s

sensitivity varies greatly:

[A]t both ends of the spectrum the colours do not change noticeably for several

half-tone intervals, whereas in the middle of the spectrum the numerous tran-

sition colours of yellow into green are all comprised in the width of a single half-

tone. This implies that in the middle of the spectrum the eye is much keener to

distinguish vibration-frequencies than towards the ends of the spectrum; and

that the magnitudes of the colour intervals are not at all like the gradations of

musical pitch in being dependent on vibration-frequencies.16

As remarkable as visual perception may be, Helmholtz’s critique brought forward

important respects in which it falls short of the ear’s capabilities to discriminate

between musical pitches.

With this in mind, starting in 1852 and overlapping with his ongoing visual

researches, Helmholtz began a no less sustained and exhaustive series of investi-

gations into the physiology of hearing. This was close to his own personal

inclinations, for he had played the piano since childhood, growing up in a musical

household in a music-loving country and era.17 When he went off to university

(taking his piano with him), his father warned him not to allow his ‘‘taste for the solid

inspiration of German and classical music be vitiated by the sparkle and dash of the

new Italian extravagances….’’18 Of course, Helmholtz, as a true Kulturträger of his

time, was also well acquainted with the masterworks of visual arts and from 1871 to

1873 gave a series of popular lectures ‘‘On the Relation of Optics to Painting.’’19

Helmholtz’s investigations into music, sound, and hearing began during his

Königsberg period and grew after he became the professor of anatomy and phys-

iology at Bonn (1855–1858), where in 1856 he wrote ‘‘On Combination Tones,’’ and

then professor of physiology at Heidelberg (1858–1871), where in 1860 and 1862 he
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wrote the papers ‘‘On Musical Temperament’’ and ‘‘On the Arabic-Persian

Scale.’’20 These few samples show something of the breadth of his investigations, for

his interest in music led him to explore beyond the confines of European practice in

order to study the cultural determination of hearing. The entire project eventuated

in his masterwork, Die Lehre von den Tonempfindungen als physiologische

Grundlage für die Theorie der Musik (On the Sensations of Tone as a Physiological

Basis for the Theory of Music), first published in 1863, whose title proclaims music

as the true object of his study; in contrast, his Handbook of Physiological Optics

makes no mention of painting or the visual arts.21 His central term Empfindung

connotes not only ‘‘sensation’’ but also ‘‘expression’’ in its full musical sense.

As with his studies of vision, Helmholtz developed or improved many instru-

ments to undertake experimental examination of the issues that emerged, such as

the glass resonators he used to isolate overtones and render them more audible

(figure 7).22 In this case, the resonator acted to amplify a sonic phenomenon so

that it was more amenable to careful scrutiny. In other cases, Helmholtz devised

means of translating and recording sonic events in a visual form, including their

time dependence (figure 8). In this way, a tuning fork can be made to inscribe its

sinusoidal vibrational pattern along a moving strip of paper, producing a visible

trace that diagrammatically graphs space against time.

So far, Helmholtz’s sonic investigations had stayed with the study of vibrating

bodies, but he realized (following the earlier example of Young) that sound was

not restricted to them, however lucid the classic mathematical analysis of their

motion dating back to Leonhard Euler.23 Where Young had reduced sound to

pure puffs of air, without any vibrating body as their source, Helmholtz used the

nascent technology of sirens to ‘‘mechanize’’ this process. He began with such

instruments as the Seebeck siren, which used a rotating disc to interrupt an air-

stream to produce its wails (figure 9).24 Though he did not invent this instrument,

Helmholtz explored and exploited its implications far beyond earlier investigators,

Fig. 7. Helmholtz’s resonator to isolate an overtone. Source: Helmholtz, Die Lehre von den

Tonempfindungen. Zweite Ausgabe (ref. 31), p. 74; On the Sensations of Tone (ref. 25), p. 43.
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particularly because he understood the theoretical implications of its construction

and operation:

The sensation of a musical tone is due to a rapid periodic motion of the sonorous

body; the sensation of a noise to non-periodic motions….

...........................................................

[The siren] is constructed in such a manner as to determine the pitch number

of the tone produced, by a direct observation....

It is clear that when the pierced disc of one of these sirens is made to revolve

with a uniform velocity, and the air escapes through the holes in puffs, the

motion of the air thus produced must be periodic in the sense already explained.

The holes stand at equal intervals of space, and hence on rotation follow each

other at equal intervals of time. Through every hole there is poured, as it were,

Fig. 8. (upper) ‘‘To render the law of such motions more comprehensible to the eye than is

possible by lengthy verbal descriptions.’’ (lower) ‘‘[T]his wavy line once drawn, remains as a

permanent image of the kind of motion performed by the end of the fork during its musical

vibrations.’’ Source: Helmholtz, Die Lehre von den Tonempfindungen. Zweite Ausgabe (ref. 31),

pp. 33-34; On the Sensations of Tone (ref. 25), p. 20.

Fig. 9. Seebeck siren, c shows the source of the airstream that is periodically interrupted by the

holes in disc A, which the cord f rotates. Source: Helmholtz, Die Lehre von den Tonempfindungen.

Zweite Ausgabe (ref. 31), p. 21; On the Sensations of Tone (ref. 25), p. 11.
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a drop of air into the external atmospheric ocean, exciting waves in it, which

succeed each other at uniform intervals of time, just as was the case when

regularly falling drops impinged upon a surface of water.25

Helmholtz, like Young before him, understood that music and noise formed a

continuum, distinguished by periodicity of the sound, or lack thereof. The siren

renders this periodicity manifest and visual because we see it in the pierced disc

whose rotations modulate the airstream: ‘‘equal intervals of space’’ between holes

directly generate ‘‘drops’’ of air over ‘‘equal intervals of time,’’ audible as a pure

tone. Thus, Helmholtz uses the siren to map visible hole spacings into audible

pitches (figure 10), bridging space and time through the spinning disc and the

concept of frequency, both as the siren’s rotational frequencies and the sound

frequencies its disc thereby generates. Helmholtz also advanced the technology of

the siren so that it could sound two pitches simultaneously, making possible

comparisons in perception (figure 11). Such a double siren could produce ‘‘com-

bination tones,’’ sounding the difference or sum of two pitches, more powerfully

than any other instrument. Helmholtz himself discovered the faint sum tones,

which he could only produce using a siren or special harmonium; the stronger

difference (or ‘‘Tartini’’) tones had long been known. Helmholtz argued that ‘‘the

greater part of the force of the combinational tone is generated in the ear itself,’’

which combines the pure superposition of the incoming pitches, heard as two

distinct tones, with their difference or sum, as predicted by nonlinear differential

equations derived from Newtonian mechanics.26 Helmholtz’s use of mathematics

shows its essential role in his argument here and in acoustics in general, as he

Fig. 10. Disc for an Oppelt siren, made by Rudolph Koenig (1832-1901) ca. 1865. Credit:

Collection of Historical Scientific Instruments, Harvard University.
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conceives it. Helmholtz ascribed the failure of superposition and the resultant

combination tones to ‘‘the unsymmetrical form of the [ear]drum skin itself’’ and,

more importantly, ‘‘the loose formation of the joint between the hammer and

anvil’’ ossicles of the middle ear. ‘‘In this case, the ossicles may click,’’ which he

hears as a ‘‘mechanical tingling in the ear’’ when ‘‘two clear and powerful soprano

voices executed passages in Thirds, in which case the combinational tone comes

out very distinctly.’’27 Here, his musical experience impinges strongly on the for-

mation of his mathematical acoustics.

Using the double siren, Helmholtz could produce other varieties of ‘‘intermit-

tent’’ or ‘‘beat tones,’’ whose sum or difference lies below the frequencies of

audible pitches (now called infrasound), hence not hearable as a combination tone

but felt viscerally as ‘‘a jar or rattle.’’ Such subsonic phenomena probe the dif-

ferences between hearing and seeing:

A jarring intermittent tone is for the nerves of hearing what a flickering light is

to the nerves of sight, and scratching to the nerves of touch. A much more

intense and unpleasant excitement of the organs is thus produced than would be

occasioned by a continuous uniform tone.

............................................................

When the separate luminous irritations follow one another very quickly, the

impression produced by each one lasts unweakened in the nerves till the next

supervenes, and thus the pauses can no longer be distinguished in sensation. In

the eye, the number of separate irritations cannot exceed 24 in a second without

Fig. 11. (left) Helmholtz’s double siren. Source: Helmholtz, Die Lehre von den Tonempfindungen.

Zweite Ausgabe (ref. 31), p. 242; On the Sensations of Tone (ref. 25), p. 162.; (right) a double siren

built by the Berlin instrument maker Sauerwald ca. 1870. Credit: Collection of Historical Scientific

Instruments, Harvard University.
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being completely fused into a single sensation. In this respect the eye is far

surpassed by the ear, which can distinguish as many as 132 intermissions in a

second and probably even that is not the extreme limit….

The ear is greatly superior in this respect to any other nervous apparatus. It is

eminently the organ for small intervals of time, and has been long used as such

by astronomers.28

This striking comparison shows how far he took comparisons between hearing and

seeing to illuminate their shared domains of space and time.

In an 1868 essay on ‘‘The Recent Progress of the Theory of Vision,’’ Helmholtz

drew attention to another fundamental contrast: vision blends several incoming

colors into one perceived hue, but hearing always leaves several notes distinctly

separate:

The eye cannot tell the difference, if we substitute orange for red and yellow;

but if we hear the notes C and E sounded at the same time, we cannot put D

instead of them, without entirely changing the impression upon the ear….

The practiced musician is able to catch the separate notes of the various

instruments among the complicated harmonies of an entire orchestra, but the

optician cannot directly ascertain the composition of light by means of the eye;

he must make use of the prism to decompose the light for him.29

Unaided hearing, then, can perceive the precise underlying mathematical ratios

within a certain harmony in ways that sight cannot perform without auxiliary

instruments. Thus, his 1857 essay, ‘‘On the Physiological Causes of Harmony in

Music,’’ apostrophized:

Mathematics and music! the most glaring possible opposites of human thought!

and yet connected, mutually sustained! It is as if they would demonstrate the

hidden consensus of all the actions of our mind, which in the revelations of

genius makes us forefeel unconscious utterances of a mysteriously active

intelligence.30

Because of the ear’s direct access to these mathematical underpinnings, Helmholtz

did not rely completely on such mechanical devices as the siren, as useful as they

are for isolating and illustrating the periodicities that underlie pitch. He constantly

turned back to music itself as his touchstone of sonic experience, to which all his

other experiments and speculations refer. As noted above, a sizable part of

Tonempfindungen is devoted to a rather technical exposition of musical theory,

including the sophisticated harmonies of augmented sixth chords that were

important in the contemporary music of Wagner and Brahms.* Among the

deductions Helmholtz made from music theory, quite apart from acoustics, is a

* For instance, the famous Prelude to Wagner’s Tristan und Isolde (first performed in 1865)
begins with an augmented sixth chord.
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principle that discerns resemblance through grasping what remains invariant in

different instances:

We recognise the resemblance between the faces of two near relations, without

being at all able to say in what the resemblance consists….

When a father and daughter are strikingly alike in some well-marked feature,

as the nose or forehead, we observe it at once, and think no more about it. But

if the resemblance is so enigmatically concealed that we cannot detect it, we are

fascinated, and cannot help continuing to compare their countenances. And if a

painter drew two such heads having, say, a somewhat different expression of

character combined with a predominant and striking, though indefinable,

resemblance, we should undoubtedly value it as one of the principal beauties of

his painting….

Now the case is similar for musical intervals. The resemblance of an Octave

to its root is so great and striking that the dullest ear perceives it; the Octave

seems to be almost a pure repetition of the root, as it, in fact, merely repeats a

part of the compound tone of the root, without adding anything new.31

This passage comes in the final pages of the work, in its section on ‘‘Aesthetic

Relations,’’ as it stood in the first two editions of the book (1863, 1865). We will

shortly return to his later (1870) additions that amplify his image; here already

Helmholtz recognizes a special quality of spatial ‘‘resemblance’’ or ‘‘recurrence’’ in

related shapes and musical intervals that are aesthetically fascinating even (or

especially) when ‘‘enigmatically concealed.’’ This quest echoes Helmholtz’s

favorite citation from Friedrich Schiller’s poem, ‘‘Der Spatziergang’’: the wise man

‘‘seeks a stable pole amid the flight of phenomena’’ (sucht den ruhenden Pol in der

Erscheinungen Flucht).32 Following this advice, Helmholtz sought the stability of

invariance in the welter of visual and musical forms.

Riemann’s Work on Space and Hearing

Already in 1862, in the midst of his detailed investigations of vision and hearing,

Helmholtz became interested in the more general problem of the nature and

fundamental character of space itself.33 At first, he was unaware of the seminal

work done decades before by Carl Friedrich Gauss and Bernhard Riemann (fig-

ure 12), to which we now turn. Beginning with practical problems in geodesy that

originated partly in his work surveying the duchy of Brunswick, in 1827 Gauss had

formulated a mathematical criterion that calculated the degree of curvature of a

two-dimensional surface (its intrinsic or Gaussian curvature) using only surveying

data collected within that surface.34 Gauss proved the ‘‘remarkable theorem’’

(theorema egregium) that this curvature is invariant no matter what coordinate

system is chosen in the surface.

In his 1854 Habilitation lecture, ‘‘On the Hypotheses that Lie at the Founda-

tions of Geometry,’’ Riemann generalized these ideas to what he called a
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‘‘manifold’’ (Mannigfaltigkeit) having an arbitrary number of dimensions, not just

the two dimensions Gauss had considered.35 Riemann drew the term ‘‘manifold’’

from Kant, who had already used it in his first published work, ‘‘Thoughts on the

True Estimation of Living Forces’’ (1747), continuing through his celebrated dis-

cussion of space and time in his Critique of Pure Reason.36 Riemann’s lecture ends

by indicating that his argument leads from geometry and its hypotheses ‘‘into the

domain of another science, the realm of physics.’’37

Riemann based his argument on a comparison between manifolds, which he

defined as comprising ‘‘multiply extended quantities,’’ such as the coordinates of

ordinary space generalized to arbitrary dimensions or the parameters describing

the mixture of colors:

[T]he general concept of multiply extended quantities, which include spatial

quantities, remains completely unexplored….

[O]pportunities for creating concepts whose instances form a continuous

manifold occur so seldom in everyday life that color and the position of sensible

objects are perhaps the only simple concepts whose instances form a multiply

extended manifold.38

Though he does not make explicit his sources, we shall see later that Riemann was

probably referring to Helmholtz’s early 1852 paper on color vision, as well as to

Fig. 12. Bernhard Riemann (1826-1866) in 1862. Source: Riemann, Gesammelte Mathematische

Werke (ref. 35), frontispiece.
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Young’s seminal work.* Riemann’s wording also raises the question whether or

not the manifold of color perception is Euclidean in its geometry, though he does

not make this explicit. His general concept of manifold is (as he shortly makes

clear) not restricted only to Euclidean geometries but also to the non-Euclidean

possibilities that had been revealed decades before by the work of Gauss, Nicolai

Ivanovich Lobachevsky, and János Bólyai.

Indeed, the whole point of his lecture is to show that Gauss’s concept of

intrinsic curvature can be carried forward into manifolds of more than three

dimensions. To do so, Riemann generalized the Pythagorean theorem to express

the ‘‘line element,’’ the invariant length of a line in the multidimensional manifold:

The problem then is to set up a mathematical expression for the length of a

line….

In space, if one expresses the location of a point by rectilinear coordinates,

then ds =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðdxÞ2
q

[according to the Pythagorean theorem]; [Euclidean]

space is therefore included in this simplest case. The next simplest case would

perhaps include the manifolds in which the line element can be expressed as the

fourth root of a differential expression of the fourth degree. Investigation of this

more general class would actually require no essentially different principles, but

it would be rather time-consuming and throw proportionally little new light on

the study of space, especially since the results cannot be expressed geometri-

cally; I consequently restrict myself to those manifolds where the line element

can be expressed by the square root of a differential expression of the second

degree.39

Thus, as the prime hypothesis on which geometry rests Riemann chose the sim-

plest possible generalization of the quadratic Pythagorean line element ds2,

namely a generalized quadratic form (which may involve more complicated cross-

products than the ordinary Pythagorean result).** He mentioned other, less simple

possibilities (such as ds2 being a fourth-degree expression), but set them aside ex

hypothesi from his subsequent arguments, noting that investigating them would be

‘‘time consuming’’ and implicitly suggesting their relative unimportance for his

investigation. Riemann conjectured that any such generalization beyond the

quadratic would be ‘‘not geometric’’ and noted that, in a generalized manifold, the

* In 1854, James Clerk Maxwell made the first color photograph, showing the wide range of
contemporary work on the consequences of the Young-Helmholtz three-color theory of
color perception, referred to in the first edition of Helmholtz, Handbuch der physiologischen
Optik (ref. 10), pp. 288–297.
** Specifically, Riemann generalizes the quadratic Euclidean line element ds2 = dx1

2 ?

dx2
2 ? dx3

2 (in terms of three spatial coordinates called, for convenience, x1, x2, x3) to a
general quadratic form ds2 = g11 dx1

2 ? g12 dx1dx2 ?g22 dx2
2 ? ��� = Rglm dxldxm (summed

over all n dimensions, l, m = 1, …, n). In this modern notation (due to Einstein, following
Levi-Civita), glm is the ‘‘metric tensor.’’ Note also that Riemann did not include these cal-
culations in his 1854 lecture, though they did appear in his paper.
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geometry in an infinitesimal neighborhood around any point is Euclidean, so that

locally the geometry of the general manifold must reduce to Euclidean ‘‘flat’’

space. Riemann took this local limit as a definitive sign of the global quadratic

form of the manifold’s metric (to use modern terminology), meaning its distance

relations.

The implications of this visionary lecture excited and startled its 1854 audience,

including Gauss himself, who had chosen this very topic from Riemann’s list of

proposals. Between then and his death from tuberculosis at the age of forty,

Riemann worked intensively on several projects. He had made important strides in

understanding electromagnetism and in 1858 was the first to formulate a partial

differential equation expressing the propagation of the electric potential with the

velocity of light, thus providing an electrodynamic wave equation.40 By compari-

son, James Clerk Maxwell only derived such an equation in 1868, after having set

forth the field equations that today bear his name and having duly acknowledged

Riemann’s priority.41 Yet Riemann was able to reach his wave equation without

having completed what, for Maxwell, was necessary groundwork.

It is tempting to speculate that Riemann might have been able to complete an

independent deduction of the full electromagnetic field theory, had he lived

longer. As it was, his wave equation explicitly linked the time and space depen-

dence of the electric potential. His 1854 lecture had positioned him to consider

higher-dimensional manifolds; his electromagnetic wave equation offered him a

link between the ‘‘dimensions’’ of space and time. Still, during the period

1854–1861 he produced the mathematical work on distribution of prime numbers

and the zeta function, now called the Riemann Hypothesis (1859), probably his

most famous initiative and the premier unsolved mathematical problem up to the

present day.42 This, by itself, might help explain why he might not have placed

electromagnetism higher in his list of priorities, though his surviving drafts and

papers show his continuing interest in physics, not to speak of his other important

mathematical projects. The speculative writings that remain as fragments in his

posthumous papers show that his attention in natural philosophy was directed to

the possible unification of gravitation and electricity.43 Given the general frame-

work of his 1854 lecture, Riemann’s project seems to have envisaged using his

many-dimensional curved manifolds as the framework for a unified theory of all

physical forces.

These theoretical drafts give the context for what remained, at his death, his

major uncompleted paper on ‘‘The Mechanism of the Ear.’’44 For both Riemann

and Helmholtz, the problem of hearing was a significant part of their larger

enterprises, an intermediate zone in which waves, geometry, and sensation met.

Riemann’s choice to study the ear (rather than the eye) is also noteworthy; surely

questions of hearing must have seemed very important to him if he set them next

to or even ahead of his other ambitious projects in electrodynamics, gravitation,

and number theory. By comparison with Helmholtz, little evidence survives that

would give biographical insight into Riemann’s choice. The son of a pastor and
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himself deeply religious, Riemann considered ‘‘daily self-examination before the

face of God’’ to be ‘‘the main point in religion.’’ Alongside this austere, contem-

plative persona, Riemann evidenced considerable love of art. According to his

friend Richard Dedekind, Riemann’s long stays in Italy after 1862, seeking to

recover his health, ‘‘were a true luminous point in his life … looking at the glory of

this enchanting land, of nature and art, made him endlessly happy.’’ The newly

married Riemann took ‘‘great interest’’ in the ‘‘art treasures and antiquities’’ of

Italy, also greatly admired by other Kulturträger, such as Helmholtz.45 Like most

of them, Riemann probably felt deeply the power of music.

At any rate, Riemann’s deep interest in understanding the ear shines through

his essay. Riemann praises Helmholtz’s ingenious experimental work on hearing,

while criticizing his findings and basic methodology. In Riemann’s view, Helm-

holtz synthesizes the anatomical structures of the ear into the functioning of the

whole organ, but at the cost of making questionable teleological assumptions

about those structures. Instead, Riemann advocates an alternative process of

analysis that begins with the observed behavior of the whole organ and then

constructs a mathematical model that would explain those functions as necessary,

not merely sufficient. By emphasizing the central functions of the organ in toto,

Riemann strives to avoid Helmholtz’s suppositions about the teleological inter-

relation of its anatomical subunits. Riemann uses anatomical knowledge for clues

to guide his model building, not as a definitive level of explanation.

The post-Kantian language of analysis and synthesis, the contrast between

necessity and sufficiency, mark Riemann’s approach as essentially mathematical

and hypothetical in spirit.

We do not—as Newton proposes—completely reject the use of analogy (the

‘‘poetry of hypothesis’’), but rather afterwards emphasize the conditions that

must be met to account for what the organ accomplishes, and discard any

notions that are not essential to the explanation, but that have arisen solely

through the use of analogy.46

In contrast to Newton’s famous strictures against ‘‘feigning’’ hypotheses, Rie-

mann’s remarkable expression, ‘‘the ‘poetry of hypothesis’ [Dichten von

Hypothesen],’’ rhetorically emphasizes the creative freedom of imagination, its

suggestive power in the formation of analytic representations of phenomena,

whether aural or geometric, in the form of hypotheses that are not restricted by

anatomical suppositions.

With this in mind, we can read Riemann’s ‘‘Mechanism of the Ear’’ as a nascent

essay ‘‘On the Hypotheses that Lie at the Foundations of Hearing,’’ comparable to

his earlier work on the hypotheses he considered fundamental to geometry.

Enough remains of Riemann’s draft to show some general features of his proposed

analysis. Against Helmholtz’s assertion that the ossicles click, Riemann notes that:
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The apparatus within the tympanic cavity (in its unspoiled condition) is a

mechanical apparatus whose sensitivity is infinitely superior to everything we

know about the sensitivity of mechanical apparatuses.

In fact, it is by no means improbable that it faithfully transmits sonic motions

that are so small that they cannot be observed with a microscope.47

For instance, ‘‘the call of the Portsmouth sentry is clearly audible at night at a

distance of 4 to 5 English miles,’’ so that ‘‘the ear does pick up sounds whose

mechanical force is millions of times weaker than that of sounds of ordinary

intensity.’’ This, he feels, negates Helmholtz’s claim about the noisiness of the

ossicles, which Riemann judges a teleological supposition introduced primarily to

support Helmholtz’s theory of combination tones.

Instead, Riemann’s approach is much closer to what now is called systems

theory: he treats the ear as a ‘‘black box’’ whose overall functioning can be

mathematically modeled based on its essential phenomenological parameters,

especially its high sensitivity and fidelity.48 His modeling involves pointed com-

parisons with vision:

I find nothing whatsoever [in hearing] analogous to the eye’s response to the

degree of illumination of the visual field, and have no idea what a continuously

variable reflex activity of M. tensor tympani is supposed to contribute to the

exact comprehension of a piece of music.49

Here Riemann refers to the tensor tympani muscle that attaches to the hammer

bone of the middle ear and can dampen the vibrations of the tympanic membrane.

Though Helmholtz had not explicitly extended his sign theory to hearing, Rie-

mann seems to take him to imply that the varying states of the tympanic muscle

are ‘‘local signs’’ of the associated sounds, as the movements of the eye muscles are

signs of what it sees.50 If so, the variable activity of the tensor tympani muscle

would correlate with auditory response to varying musical sounds. In contrast,

Riemann argues that a constant tension of this auditory muscle should accompany

the activity of ‘‘the alert ear—the ear deliberately prepared for precise percep-

tion,’’ whose acuity depends on the tympanic muscle to maintain steady contact

between the ossicles and the inner ear.51

Riemann’s analytic program requires that ‘‘we must now derive from the

empirically known functions performed by the organ, the conditions which must

be met in this transmission … [by] seeking a mathematical expression for the

nature of the pressure fluctuation upon which timbre depends.’’52 Though in his

1854 lecture Riemann held that ‘‘color and the position of sensible objects are

perhaps the only simple concepts whose instances form a multiply extended

manifold,’’ by 1866 he seems poised to treat hearing as a further example of such a

manifold. Riemann does not provide any mathematical details of his approach to

hearing, but, based on his work on geometrical ‘‘hypotheses’’ and his work on

shock waves in fluids, we may infer that he intended to use some kind of
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multidimensional manifold, analogous to those he proposed to represent the

geometric effect of physical sources.53 Where Helmholtz took evidence from

hearing and seeing into his geometric investigations, Riemann traversed an

opposite course, applying geometric insights to model the functioning of the ear.

In its unfinished form, Riemann’s ‘‘Mechanism of the Ear’’ was published

posthumously in a medical journal in 1867. Helmholtz responded in 1867 and 1869

in two papers, ‘‘On the Mechanism of the Ossicles of the Ear,’’ whose titles once

again reflect the fundamental contrast between the two men: Helmholtz’s ‘‘facts’’

(or ossicles) versus Riemann’s ‘‘poetry of hypothesis’’ (the ear considered as a

high-sensitivity sound transducer, regardless of its anatomical details).54 Though

publicly Helmholtz wrote respectfully of the ‘‘great mathematician’s’’ foray into his

own domain, privately he expressed irritation at Riemann the ‘‘amateur.’’55 In his

printed response, Helmholtz did not engage Riemann’s philosophical contrast

between analytic and synthetic, but argued that the ossicles can act ‘‘practically, as

absolutely solid bodies’’ that thereby can transmit sound with the high sensitivity

Riemann had emphasized. To show that his anatomical model could meet Rie-

mann’s critique, Helmholtz gave a detailed account of the fine structure of the

ossicles and their subtle interconnections, as well as of the tensor tympani muscle

(figure 13). Rhetorically, Helmholtz sweeps away Riemann’s theorizing under a

deluge of anatomic observations, implicitly arguing that only in such terms can any

physiology of the ear be responsibly phrased. For the time being, Riemann, the

defunct ‘‘amateur,’’ was quietly buried under a mountain of Helmholtz’s ‘‘profes-

sional’’ anatomy.*

Helmholtz and the ‘‘Problem of Space’’

This controversy about hearing led Helmholtz to devote much attention to Rie-

mann’s work, yet he only received Riemann’s 1854 lecture in May 1868, the year in

which it finally appeared in print.56 Yet even before he had read it, Helmholtz had

already inferred ‘‘that Riemann came to exactly the same conclusion as myself,’’ as

he wrote Ernst Schering on April 21, 1868.

My starting-point is the question: What must be the nature of a magnitude of

several dimensions in order that solid bodies (i.e. bodies with unaltered relative

* Helmholtz’s detailed description of the ear was superseded by later anatomical findings,
particularly because the larger context of the processing of hearing became understood as
involving the auditory system of the brain as well. Rather than being a kind of nerve-piano,
its separate cilia sympathetically responding to incoming pitches, the cochlea currently is
considered to comprise a series of chambers of variable resonant frequency, in which the
cilia respond to the local amplitude of vibration, rather than its frequency. As Riemann
surmised, the overall functioning of hearing may be described in terms of inputs and outputs
of a complex electrical network. See, for example, Jonathan Sterne, The Audible Past:
Cultural Origins of Sound Reproduction (Durham and London: Duke University Press,
2003), pp. 62–67.
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measurements) shall everywhere be able to move in it as continuously, mon-

odromously, and freely, as do bodies in actual space? Answer, expressed

according to our analytical geometry: ‘‘Let x, y, z, t be the rectangular

co-ordinates of a space of four dimensions, then for every point of our tri-

dimensional space it follows that x2 ? y2 ? z2 ? t2 = R2, where R is an unde-

termined constant, which is infinite in Euclidean space.’’57

This extraordinary statement has received little notice, though (to my knowledge)

it may be the first explicit use of four dimensions to state and address what became

called ‘‘the problem of space,’’ aside from a few speculative remarks by Jean le

Rond d’Alembert (1754) and Joseph Louis Lagrange (1797).58 As we shall see, the

formulation given in this letter remained in Helmholtz’s mind.

Helmholtz’s pursuit of invariance, whether as resemblances in the visual field or

as recurrences in music, led directly to his 1868 paper, ‘‘On the Factual Founda-

tions of Geometry,’’ which begins with an explicit connection to his work on the

physiology of vision:

Investigations into how localization in the visual field comes to pass have led

the author also to reflect on the origins of spatial intuition in general. This leads

first of all to a question whose answer definitely belongs to the sphere of exact

science, namely, which propositions of geometry express truths of factual sig-

nificance and which, on the contrary, are only definitions or consequences of

definitions and their particular manner of expression?…

Fig. 13. Sketch showing Helmholtz’s response to Riemann regarding the precise functioning of

the hammer and anvil. Source: Helmholtz, ‘‘Mechanik der Gehörknöchelchen und des Tromm-

elfelles’’ (ref. 54), p. 557; Mechanism of the Ossicles of the Ear (ref. 54), p. 45.
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[O]ne could follow this direction and find out which analytical characteristics

of space and spatial magnitudes must be presupposed in order to ground the

propositions of analytic geometry completely from the beginning.59

For Helmholtz, questions about ‘‘the origins of spatial intuition in general’’ emerge

from studies of the visual system and lead directly to considerations about the

nature of geometry. In so doing, he breached the customary barrier between the

propositions of geometry and physical reality, previously considered separate from

one another.

Though during this period he had been mainly working on experimental

physiology, Helmholtz reveals that he had gone remarkably far in his own self-

directed reconsideration of the mathematical and philosophical problems con-

cerning the nature of space:

The author had already begun such an investigation and had completed it in the

main when Riemann’s habilitation lecture ‘‘On the Hypotheses That Lie at the

Foundations of Geometry’’ was made public, in which an identical investigation

is carried out, having only a slightly different formulation of the question. On

this occasion, we learned that Gauss had also worked on the same subject

matter, of which his famous essay on the curvature of surfaces is the only

published part of that investigation.60

Riemann’s argument assumes a generalized quadratic line element but does not

prove its necessity. Helmholtz asked whether there is some fundamental reason

that would necessarily mandate this assumption, rather than other, more general

possibilities.

Helmholtz’s 1868 paper summarized his response to this problem.61 Though he

shared with Riemann the fundamental idea that geometry ultimately rested on

physics, rather than on transcendental ideas, Helmholtz replaced Riemann’s

‘‘hypotheses’’ with ‘‘facts.’’ Steeped in Goethe, like his educated contemporaries,

Helmholtz knew by heart Faust’s amendment of the Gospel of St. John’s opening

line from ‘‘In the beginning was the Word’’ to ‘‘In the beginning was the Deed’’

(‘‘Im Anfang war die That’’); like Faust, Helmholtz moved from the Word (or

Riemann’s ‘‘hypotheses’’) to the Deed, understood as the Fact.62

Helmholtz argued that fundamental physical facts necessitate the quadratic

form of the line element. Specifically, he assumes: ‘‘(1) Continuity and dimensions’’

(each point in space is determined by n continuous, independent variables); ‘‘(2)

The existence of moving and rigid bodies’’; ‘‘(3) Free mobility’’ (meaning that ‘‘each

point can pass over into any other along a continuous path’’); and finally ‘‘(4) The

invariance of the form of rigid bodies under rotation.’’63 From these premises, he

deduced that

if we desire to find the degree of rigidity and mobility of natural bodies

attributable to our space in a space of otherwise unknown properties, the
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square of the line element ds would have to be a homogenous second-degree

function of infinitely small increments of the arbitrarily chosen coordinates u, v,

w. This proposition … [is] the most general form of the Pythagorean Theorem.*

The proof of this proposition vindicates the assumption of Riemann’s investi-

gations into space.64

In his original draft, Helmholtz thought this meant that the quadratic form had to

correspond to Euclidean geometry, but Eugenio Beltrami and Sophus Lie soon

objected to this erroneous overspecialization of a more generalized result that

Helmholtz should have found: in fact, the quadratic form was, in general, non-

Euclidean, as Helmholtz acknowledged in a note appended to his 1868 paper.65 In

the subsequent literature, this issue became known as the Helmholtz-Lie Raum-

problem, the ‘‘problem of space’’ par excellence; not a merely technical matter or a

fine point of mathematical rigor, this problem has deep implications for Einstein’s

geometric account of gravitation because it dictates the fundamental form of the

metric, the geometrical field created by the bodies immersed in it, which in turn

move along its shortest (geodesic) paths.66

Helmholtz’s oversight probably implies his initial lack of knowledge about non-

Euclidean geometry, confirming that he was not aware of the non-Euclidean

import of his color diagrams (figure 5) when he first published them in 1867,

before his enlightenment by Beltrami and Lie.67 In his 1868 paper, he emphasized

that:

The independence of the congruence of rigid point-systems from place, loca-

tion, and the system’s relative rotation is the fact on which geometry is

grounded.

This becomes even clearer when we compare space with other multiply

extended manifolds, for example the system of colors. In this case, as long as we

have no other method of measurement than through the law of color mixing,

there exists, unlike in space, no relation of magnitudes between any two points

that can be compared with that between two other points. Instead, there exists a

relation between groups of any three points that also must lie in a straight line

(that is, in groups of any three colors, among which any one is mixable into the

other two).

We find another difference in the field of vision of a single eye, where no

rotations are possible so long as we confine ourselves to natural eye

movements.68

Under the influence of Riemann’s conception of manifold, Helmholtz now

reinterprets his earlier diagrams of ‘‘the system of colors’’ as a ‘‘threefold-

extended manifold’’ comparable to three-dimensional space (Raum).69 Though

* This is the form for ds given in footnote **, under the section "Riemann’s Work on Space
and Hearing."
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we have become used to the notion that non-spatial magnitudes can be described

as if they constituted a ‘‘space,’’ this broadening of the concept of space should

be credited to Riemann’s manifolds.* Following on Helmholtz’s pioneering

experimental studies of vision, Riemann adduced space and color as comparable

manifolds, terminology Helmholtz then used to categorize the ‘‘system of colors’’

more deeply.

Helmholtz’s Musical ‘‘Space’’

Overlapping his work on this ‘‘problem of space,’’ Helmholtz returned to musical

concerns as he prepared a third edition of his Tonempfindungen (1870). His new

additions clarify the significance of music for his thinking about geometry as he

developed his nascent ideas of resemblance and invariance. In the 1870 version, he

expanded the concluding passage of the work concerning visual resemblances and

musical recurrences, adding that they should be regarded as ‘‘by no means a

merely external indifferent regularity’’; in contrast, poetic rhythm is an ‘‘external

arrangement’’ merely imposed on words to make them conform to metrical units.

Instead,

[I have shown] that the equality of two intervals lying in different sections of the

[musical] scale would be recognized by immediate sensation…. This produces a

definiteness and certainty in the measurement of intervals for our sensations,

such as might be looked for in vain in the system of colours, otherwise so

similar, or in the estimation of mere differences of intensity in our various

sensual perceptions.70

The invariance of musical intervals or melodies, when transposed, has no prece-

dent in the ‘‘space’’ of color; we can transpose a Beethoven sonata up a half step

and still recognize the work as in some sense still the same, yet we cannot likewise

‘‘transpose’’ all the colors of a Rembrandt (say by shifting all reds to orange,

orange to yellow, and so forth): Though the basic line and surface contours of the

painting remain unchanged, its color harmony cannot be ‘‘transposed’’ and remain

recognizably identical. Helmholtz extends the special quality of spatial resem-

blance that can be seen in related shapes (such as the similar profiles of father and

daughter) to the characteristic melodic contour of a certain piece of music, but not

to colors.

* The influence of Grassmann should also be considered, though that by itself does not
seem to have been sufficient for Helmholtz to speak of manifolds in his 1867 Handbuch,
which does mention Grassmann. Riemann does not seem to have known Grassmann’s work,
which still is ‘‘not a general theory of manifolds,’’ as argued by Torretti, Philosophy of
Geometry (ref. 66), p. 109. See also Erhard Scholz, Geschichte des Mannigfaltigkeitsbegriffs
von Riemann bis Poincaré (Boston, Basel, Stuttgart: Birkhäuser, 1980), esp. pp. 24–94,
113–123.
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Helmholtz goes on to emphasize the consequences of this resemblance or

invariance in music:

Upon this reposes also the characteristic resemblance between the relations of

the musical scale and of space, a resemblance which appears to me of vital

importance for the peculiar effects of music. It is an essential character of space

that at every position within it like bodies can be placed, and like motions can

occur. Everything that is possible to happen in one part of space is equally

possible in every other part of space and is perceived by us in precisely the same

way. This is the case also with the musical scale. Every melodic phrase, every

chord, which can be executed at any pitch, can be also executed at any other

pitch in such a way that we immediately perceive the characteristic marks of

their similarity. On the other hand, also, different voices executing the same or

different melodic phrases, can move at the same time within the compass of the

scale, like two bodies in space, and, provided they are consonant in the accented

parts of bars, without creating any musical disturbances. Such a close analogy

consequently exists in all essential relations between the musical scale and

space, that even alteration of pitch has a readily recognized and unmistakable

resemblance to motion in space, and is often metaphorically termed the

ascending or descending motion or progression of a part. Hence, again, it

becomes possible for motion in music to imitate the peculiar characteristics of

motive forces in space, that is, to form an image of the various impulses and

forces which lie at the root of motion. And on this, as I believe, essentially

depends the power of music to picture emotion.71

Because music relies on the recognition of analogy, resemblance, and invariance,

Helmholtz deduces that it therefore can ‘‘imitate the peculiar characteristic of

motive forces in space’’: Though not itself spatial or extended, music can move in

precise analogy to spatial motion, from which Helmholtz boldly identifies the

emotive force of music: its virtual motion is felt as emotion precisely because of

the deep isomorphism between musical and physical space.

Musical, Visual, and Geometric Manifolds

Over the next few years, Helmholtz extended the implications of his 1868 argu-

ments about the Raumproblem. He presented popular lectures and essays,

addressed to a wider educated audience, concerning larger philosophical issues

emergent from his own work.72 Immediately after completing the additions we

have just considered to the 1870 edition of his Tonempfindungen, Helmholtz

delivered his lecture ‘‘On the Origin and Significance of Geometrical Axioms,’’

which discusses ‘‘the philosophical bearing of recent inquiries concerning geo-

metrical axioms and the possibility of working out analytically other systems of

geometry with other axioms than Euclid’s.’’73
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For the first time in his writings on the Raumproblem, Helmholtz describes in

detail non-Euclidean geometries and the pseudosphere of Beltrami, whose criti-

cisms had first moved Helmholtz to address this issue directly.* Helmholtz also

brings forward a striking device for comparing and contrasting these different

geometries: ‘‘Think of the image of the world in a convex mirror.’’ In this mirror-

world, the theorems of Euclidean geometry would instantly be translated into non-

Euclidean image-theorems, at least as seen from our side of the mirror:

In short I do not see how men in the mirror are to discover that their bodies are

not rigid solids and their experiences good examples of the correctness of

Euclid’s axioms. But if they could look out upon our world as we can look into

theirs, without overstepping the boundary, they must declare it to be a picture

in a spherical mirror, and would speak of us just as we speak of them.…
[N]either, so far as I can see, would be able to convince the other that he had

the true, the other the distorted relations.74

As further evidence, Helmholtz also adduces the eye’s ability to accommodate

when looking through ‘‘convex spectacles’’ with which he had experimented in the

course of his visual studies: ‘‘[A]fter going about a little the illusion would van-

ish…. We have every reason to suppose that what happens in a few hours to

anyone beginning to wear spectacles would soon enough be experienced in

pseudospherical space. In short, pseudospherical space would not seem to us very

strange, comparatively speaking,’’75 once we had gotten used to it, just as our eyes

would quickly get used to those ‘‘distorting’’ spectacles. Helmholtz’s penetrating

insight into the relative consistency of these seemingly antithetical geometries,

Euclidean and non-Euclidean, is directly indebted to his studies of visual physi-

ology. Indeed, looking back at his recent work, he remarks that:

Whilst Riemann entered upon this new field from the side of the most general

and fundamental questions of analytical geometry, I myself arrived at similar

conclusions, partly from seeking to represent in space the system of colours,

involving the comparison of one threefold extended manifold with another, and

partly from inquiries on the origin of our ocular measure for distances in the

field of vision.76

As in his 1868 paper, Helmholtz considers that his own ‘‘facts’’ confirm Riemann’s

‘‘hypotheses.’’

In his 1870 exposition, besides adducing the three-dimensional manifolds of

‘‘the space in which we live’’ and ‘‘the system of colors,’’ Helmholtz adds that:

‘‘[T]ime also is an aggregate [a manifold] of one dimension.’’77 Here, for the first

time, time enters the discussion as another possible manifold, albeit one-dimen-

sional.78 Nor did Riemann include time explicitly in his geometrical (hence

* A pseudosphere is a surface of constant negative curvature, roughly saddle-shaped, used
by Beltrami in 1868 as a model for Lobachevky’s hyperbolic geometry.
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implicitly spatial) manifolds. Immediately after his mention of time, Helmholtz

goes on to include the manifold of musical tones, whose time dependence he had

studied so closely.

In the same way we may consider the system of simple tones as an aggregate [a

manifold] of two dimensions, if we distinguish only pitch and intensity and leave

out of account differences of timbre. This generalization of the idea is well-

suited to bring out the distinction between space of three dimensions and other

aggregates [manifolds]. We can, as we know from daily experience, compare

the vertical distance of two points with the horizontal distance of two others,

because we can apply a measure first to the one pair and then to the other. But

we cannot compare the difference between two tones of equal pitch and dif-

ferent intensity with that between two tones of equal intensity and different

pitch. Riemann showed by considerations of this kind that the essential foun-

dation of any system of geometry is the expression that it gives for the distance

between two points lying in any direction from one another….79

Helmholtz’s concept of manifold includes music and sound in the same arena as

space, time, color, and vision. Though simple tones may be described as a manifold

of two dimensions, Helmholtz had investigated the parameters of timbre that

distinguish complex musical sonorities from simple tones. At this point, the

question of dimensionality seems open: going beyond the two dimensions of

simple tones, how many dimensions really are needed to describe the full character

of musical ‘‘space’’? And what then of the dimensional relations between space

and time?80 Though he does not go further, Helmholtz leaves the Raumproblem as

the shared heritage of the manifolds of music, vision, space, and time.

The conclusion of Helmholtz’s 1876 revised version of his essay, ‘‘On the Origin

and Meaning of Geometrical Axioms,’’ clarifies his current understanding that:

(1) The axioms of geometry, taken by themselves out of all connection with

mechanical propositions, represent no relations of real things…. [T]hey con-

stitute a form into which any empirical content whatever will fit, and which

therefore does not in any way limit or determine beforehand the nature of the

content. This is true, however, not only of Euclid’s axioms, but also of the

axioms of spherical and pseudospherical geometry.

(2) As soon as certain principles of mechanics are conjoined with the axioms

of geometry, we obtain a system of propositions which has real import, and

which can be verified or overturned by empirical observations….81

Where Kant had judged Euclidean geometry to be valid a priori, Helmholtz

included Euclidean and non-Euclidean geometries on the same footing, each ‘‘a

form into which any empirical content whatever will fit.’’82 Hence, the axioms of

geometry must meet ‘‘certain principles of mechanics’’ in ways that finally rest on

empirical observations. Helmholtz’s view of this empirical confrontation was
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informed both by optics (and visual physiology) and mechanics (and its connection

to acoustics and music).

In this revised, 1876 version, Helmholtz also added a mathematical appendix on

‘‘the elements of the geometry of spherical space,’’ the same four-dimensional

manifold he had mentioned to Schering in his 1868 letter, cited above, described

by the expression x2 ? y2 ? z2 ? t2 = R2. Though he seems to treat t as a fourth

spatial coordinate, its common identification as time pervaded contemporary

mathematical physics; Helmholtz also allowed t to become an imaginary quantity,

further increasing the similarity with the pseudo-Euclidean space-time used by

Einstein and Minkowski.*

Such beguiling speculations aside, it would go much too far to conclude that

Helmholtz had (even unknowingly) written down an expression from relativistic

physics, fifty years in advance. His appendix, however, does illustrate his ability to

invoke a four-dimensional manifold to describe mathematically our visual expe-

rience, were we looking ‘‘through a pair of convex spectacles’’ specially ground to

give a negative focal length. Consonant with his empirical method, Helmholtz

showed that we could thereby imagine a four-dimensional pseudospherical

‘‘space,’’ contra Kant’s denial of that possibility. Long before Edwin Abbott’s

Flatland (1892), in this essay Helmholtz was probably the first writer to describe

‘‘reasoning beings of only two dimensions’’ who ‘‘live and move on the surface of

some solid body’’ in order to help us imagine the felt reality of higher

dimensions.83

Relativistic Resonances

The influence of Helmholtz and Riemann remained crucial in subsequent devel-

opments of the problem of space. As noted above, Lie embedded his correction of

Helmholtz’s erroneous generalizations in the emergent structure of his theory of

continuous groups.84 Aside from William Kingdon Clifford’s response,85 Rie-

mann’s work lay dormant among his immediate successors. The philosophical

implications of Helmholtz’s work were important to Felix Klein in connection with

his Erlangen Program to characterize spaces by their characteristic groups of

transformations and respective invariants.86 As Klein remarked in 1893, ‘‘our ideas

of space come to us through the senses of vision and motion, the ‘optical prop-

erties’ of space forming one source, while the ‘mechanical properties’ form

another; the former corresponds in a general way to the projective properties, the

latter to those discussed by Helmholtz.’’87

* Helmholtz writes his four-dimensional line element as ds2 = dx2 ? dy2 ? dz2 ? dt2, in
which he then allows t to become imaginary (t = is), so that the four-dimensional manifold
is now pseudospherical and hence ds2 = dx2 ? dy2 ? dz2 - ds2, exactly the form of the
Lorentzian line-element used by Einstein and Minkowski, if s = ct, where c is the speed of
light.
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Henri Poincaré emphasized Riemann’s work and also responded strongly to

Helmholtz’s arguments in connection with his own view that convention and

convenience underlie the choice of a geometry for space.88 Poincaré also carried

forward Helmholtz’s thought experiment of viewing the Euclidean world through

convex mirrors or distorting spectacles, which Poincaré phrased in terms of a

‘‘dictionary’’ that would translate the terms of Euclidean geometry into non-

Euclidean terms, one for one, so as to make clear that Euclidean geometry was no

less consistent than Lobachevskian.89 Thus, within purely Euclidean geometry, a

model could be made of Euclidean figures that in every respect behaved like

Lobachevskian geometry, once the fundamental elements (lines, angles, etc.) had

been suitably redefined, corresponding to the action of the distorting mirrors or

lenses; conversely, Lobachevskian geometry could be made to behave as if it were

Euclidean by a similar set of redefinitions. Poincaré’s argument and Klein’s further

activities in providing other such models were crucial steps in understanding the

relationships between the different geometries as not only equally possible but

equally consistent. This demonstrated equality of status in turn opened the pos-

sibility of addressing the empirical observations that (as Helmholtz suggested)

might then ground the choice between geometries.

Einstein’s general theory of relativity gave a precise form to this connection

between the empirical (understood as stress-energy) and the geometrical (the

invariant curvature of space-time).90 Rather than ignoring the history of these

concepts (as he sometimes is represented), in fact Einstein (figure 14) was deeply

Fig. 14. Albert Einstein (1879-1955). Credit: American Institute of Physics Emilio Segrè Visual

Archives.
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conscious of history and drew not only general inspiration but specific guidance

from what went before. As Einstein wrote Robert Thornton in 1944:

A knowledge of the historic and philosophical background gives that kind of

independence from prejudices of his generation from which most scientists are

suffering. This independence created by philosophical insight is—in my opin-

ion—the mark of distinction between a mere artisan or specialist and a real

seeker after truth.91

Einstein’s own essays contain a wealth of historical reflection and awareness, such

as his observation that:

Only the genius of Riemann, solitary and uncomprehended, by the middle of

the last century already broke through to a new conception of space, in which

space was deprived of its rigidity and in which its power to take part in physical

events was recognized as possible.92

Indeed, Riemann had worked out the curvature tensor (now named after him) that

was all important for Einstein’s general theory.93 Einstein’s tribute pays what he

recognizes as a major debt. Arguably, too, Einstein’s famous description of

physical theory as ‘‘free creations of the human mind’’ may have its roots in

Riemann’s ‘‘poetry of hypotheses.’’94

Einstein’s words in praise of Riemann are far better known than his 1917

encomium of Helmholtz’s Goethe essays—‘‘Dear reader! Summarizing would be

profanation. Read for yourself!’’95—or his 1925 hommage: ‘‘[that] all propositions

of geometry gain the character of assertions about real bodies … was especially

clearly advocated by Helmholtz, and we can add that without him the formulation

of relativity theory would have been practically impossible.’’96 Einstein considered

Helmholtz’s connection of geometric hypotheses to empirical facts as absolutely

crucial for the general theory of relativity, whose field equations epitomize that

connection. To reach that point, Helmholtz connected his work in music and

vision, hearing and seeing, whose comparison lay at the grounds of his synthetic

understanding. His dialogue with Riemann reflects and underscores the signifi-

cance of their shared concern with hearing in the context of the problem of space

and the physical foundations of geometry.
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